Nothing Special   »   [go: up one dir, main page]

Skip to main content

Card-Based Cryptographic Protocols with the Minimum Number of Cards Using Private Operations

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11358))

Included in the following conference series:

Abstract

This paper proposes new card-based cryptographic protocols with the minimum number of cards using private operations under the semi-honest model. Though various card-based cryptographic protocols were shown, the minimum number of cards used in the protocol has not been achieved yet for many problems. Operations executed by a player where the other players cannot see are called private operations. Private operations have been introduced in some protocols to solve a particular problem or to input private values. However, the effectiveness of introducing private operations to the calculation of general logic functions has not been considered. This paper introduces three new private operations: private random bisection cuts, private reverse cuts, and private reveals. With these three new operations, we show that all of logical and, logical xor, and copy protocols are achieved with the minimum number of cards by simple three round protocols. This paper, then shows a protocol to calculate any logical functions using these private operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, Y., Hayashi, Y., Mizuki, T., Sone, H.: Five-card and protocol in committed format using only practical shuffles. In: Proceedings of 5th ACM International Workshop on Asia Public-Key Cryptography (APKC 2018), pp. 3–8 (2018)

    Google Scholar 

  2. den Boer, B.: More efficient match-making and satisfiability the five card trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

    Chapter  Google Scholar 

  3. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_27

    Chapter  Google Scholar 

  4. Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary and sufficient numbers of cards for securely computing two-bit output functions. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 193–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61273-7_10

    Chapter  MATH  Google Scholar 

  5. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol using a deck of cards. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 135–152. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72089-0_8

    Chapter  Google Scholar 

  6. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation without fixed points. In: Proceedings of 3rd International Conference on Mathematics and Computers in Sciences and in Industry (MCSI 2016), pp. 252–257 (2016)

    Google Scholar 

  7. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16

    Chapter  Google Scholar 

  8. Kastner, J., et al.: The Minimum number of cards in practical card-based protocols. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 126–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_5

    Chapter  Google Scholar 

  9. Koch, A.: The landscape of optimal card-based protocols. IACR Cryptology ePrint Archive, Report 2018/951 (2018)

    Google Scholar 

  10. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. Cryptology ePrint Archive, Report 2017/423 (2017)

    Google Scholar 

  11. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_32

    Chapter  Google Scholar 

  12. Kurosawa, K., Shinozaki, T.: Compact card protocol. In: Proceedings of SCIS 2017. pp. 1A2–6 (2017). (in Japanese)

    Google Scholar 

  13. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. IACR Cryptology ePrint Archive, Report 2015/1031 (2015)

    Google Scholar 

  14. Mizuki, T.: Card-based protocols for securely computing the conjunction of multiple variables. Theor. Comput. Sci. 622, 34–44 (2016)

    Article  MathSciNet  Google Scholar 

  15. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39074-6_16

    Chapter  Google Scholar 

  16. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_36

    Chapter  Google Scholar 

  17. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic protocols and its applications. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100(1), 3–11 (2017)

    Article  Google Scholar 

  18. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

    Chapter  Google Scholar 

  19. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-based three-input voting protocol utilizing private permutations. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 153–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72089-0_9

    Chapter  Google Scholar 

  20. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 500–517. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_30

    Chapter  Google Scholar 

  21. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci. 191(1), 173–183 (1998)

    Article  MathSciNet  Google Scholar 

  22. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 110–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_11

    Chapter  Google Scholar 

  23. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input functions with eight cards. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98(6), 1145–1152 (2015)

    Article  Google Scholar 

  24. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority function with eight cards. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45008-2_16

    Chapter  Google Scholar 

  25. Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols using unequal division shuffles. Soft Comput. 22(2), 361–371 (2018)

    Article  Google Scholar 

  26. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the millionaires’ problem using private input operations. In: Proceedings of 13th Asia Joint Conference on Information Security (AsiaJCIS 2018), pp. 23–28 (2018)

    Google Scholar 

  27. Ruangwises, S., Itoh, T.: And protocols using only uniform shuffles. arXiv preprint arXiv:1810.00769 (2018)

  28. Shirouchi, S., Nakai, T., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for logic gates utilizing private permutations. In: Proceedings of SCIS 2017, pp. 1A2–2 (2017). (in Japanese)

    Google Scholar 

  29. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1), 671–678 (2001)

    Article  MathSciNet  Google Scholar 

  30. Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement a random bisection cut. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M.A. (eds.) TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49001-4_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Manabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ono, H., Manabe, Y. (2019). Card-Based Cryptographic Protocols with the Minimum Number of Cards Using Private Operations. In: Zincir-Heywood, N., Bonfante, G., Debbabi, M., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2018. Lecture Notes in Computer Science(), vol 11358. Springer, Cham. https://doi.org/10.1007/978-3-030-18419-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18419-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18418-6

  • Online ISBN: 978-3-030-18419-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics