Abstract
We present a hybrid discrete-continuous extension of Reiter’s temporal situation calculus, directly inspired by hybrid systems in control theory. While keeping to the foundations of Reiter’s approach, we extend it by adding a time argument to all fluents that represent continuous change. Thereby, we ensure that change can happen not only because of actions, but also due to the passage of time. We present a systematic methodology to derive, from simple premises, a new group of axioms which specify how continuous fluents change over time within a situation. We study regression for our new hybrid action theories and demonstrate what reasoning problems can be solved. Finally, we show that our hybrid theories indeed capture hybrid automata.
Supported by the Natural Sciences and Engineering Research Council of Canada.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Batusov, V., De Giacomo, G., Soutchanski, M.: Hybrid temporal situation calculus. CoRR 1807.04861 (2018). https://export.arxiv.org/abs/1807.04861
Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: First-order \(\mu \)-calculus over generic transition systems and applications to the situation calculus. Inf. Comput. 259(3), 328–347 (2018)
Claßen, J., Hu, Y., Lakemeyer, G.: A situation-calculus semantics for an expressive fragment of PDDL. In: Proceedings of AAAI-2007, Vancouver, British Columbia, Canada, 22–26 July 2007, pp. 956–961. AAAI Press (2007)
Davoren, J., Nerode, A.: Logics for hybrid systems (invited paper). Proc. IEEE 88(7), 985–1010 (2000)
De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded situation calculus action theories. Artif. Intell. 237, 172–203 (2016)
Finzi, A., Pirri, F.: Representing flexible temporal behaviors in the situation calculus. In: Proceedings of IJCAI-05, Edinburgh, UK, pp. 436–441 (2005)
Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: Lipovac, V., Scedrov, A. (eds.) Proceedings of LICS-2012, Dubrovnik, Croatia, 25–28 June 2012, pp. 305–314. IEEE Computer Society (2012)
Grosskreutz, H., Lakemeyer, G.: cc-Golog – a logical language dealing with continuous change. Log. J. IGPL 11(2), 179–221 (2003)
Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \({\delta }\)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15
Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: a logic programming language for dynamic domains. J. Log. Program. 31, 59–83 (1997)
Miller, R.: A case study in reasoning about actions and continuous change. In: Wahlster, W. (ed.) Proceedings of ECAI 1996, pp. 624–628 (1996)
Nerode, A.: Logic and control. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 585–597. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73001-9_61
Pinto, J.: Temporal reasoning in the situation calculus. Ph.D. thesis, University of Toronto, Toronto, Canada (1994)
Platzer, A.: A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems. Log. Methods Comput. Sci. 8(4), 1–44 (2012)
Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Autom. Reason. 59(2), 219–265 (2017)
Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT press, Cambridge (2001)
Sandewall, E.: Combining logic and differential equations for describing real-world systems. In: Brachman, R.J., Levesque, H.J., Reiter, R. (eds.) Proceedings of KR 1989, Toronto, Canada, 15–18 May 1989, pp. 412–420. Morgan Kaufmann (1989)
Soutchanski, M.: Execution monitoring of high-level temporal programs. In: Beetz, M., Hertzberg, J. (eds.) Robot Action Planning, Proceedings of the IJCAI-99 Workshop, Stockholm, Sweden, pp. 47–54 (1999)
Teschl, G.: Ordinary differential equations and dynamical systems. AMS (2012). https://www.mat.univie.ac.at/~gerald/ftp/book-ode/ode.pdf
Vallati, M., Magazzeni, D., De Schutter, B., Chrpa, L., McCluskey, T.L.: Efficient macroscopic urban traffic models for reducing congestion: a PDDL+ planning approach. In: AAAI, pp. 3188–3194 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Batusov, V., De Giacomo, G., Soutchanski, M. (2019). Hybrid Temporal Situation Calculus. In: Meurs, MJ., Rudzicz, F. (eds) Advances in Artificial Intelligence. Canadian AI 2019. Lecture Notes in Computer Science(), vol 11489. Springer, Cham. https://doi.org/10.1007/978-3-030-18305-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-18305-9_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-18304-2
Online ISBN: 978-3-030-18305-9
eBook Packages: Computer ScienceComputer Science (R0)