Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hybrid Temporal Situation Calculus

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11489))

Included in the following conference series:

  • 2654 Accesses

Abstract

We present a hybrid discrete-continuous extension of Reiter’s temporal situation calculus, directly inspired by hybrid systems in control theory. While keeping to the foundations of Reiter’s approach, we extend it by adding a time argument to all fluents that represent continuous change. Thereby, we ensure that change can happen not only because of actions, but also due to the passage of time. We present a systematic methodology to derive, from simple premises, a new group of axioms which specify how continuous fluents change over time within a situation. We study regression for our new hybrid action theories and demonstrate what reasoning problems can be solved. Finally, we show that our hybrid theories indeed capture hybrid automata.

Supported by the Natural Sciences and Engineering Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Batusov, V., De Giacomo, G., Soutchanski, M.: Hybrid temporal situation calculus. CoRR 1807.04861 (2018). https://export.arxiv.org/abs/1807.04861

  2. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: First-order \(\mu \)-calculus over generic transition systems and applications to the situation calculus. Inf. Comput. 259(3), 328–347 (2018)

    Google Scholar 

  3. Claßen, J., Hu, Y., Lakemeyer, G.: A situation-calculus semantics for an expressive fragment of PDDL. In: Proceedings of AAAI-2007, Vancouver, British Columbia, Canada, 22–26 July 2007, pp. 956–961. AAAI Press (2007)

    Google Scholar 

  4. Davoren, J., Nerode, A.: Logics for hybrid systems (invited paper). Proc. IEEE 88(7), 985–1010 (2000)

    Article  Google Scholar 

  5. De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded situation calculus action theories. Artif. Intell. 237, 172–203 (2016)

    Article  MathSciNet  Google Scholar 

  6. Finzi, A., Pirri, F.: Representing flexible temporal behaviors in the situation calculus. In: Proceedings of IJCAI-05, Edinburgh, UK, pp. 436–441 (2005)

    Google Scholar 

  7. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: Lipovac, V., Scedrov, A. (eds.) Proceedings of LICS-2012, Dubrovnik, Croatia, 25–28 June 2012, pp. 305–314. IEEE Computer Society (2012)

    Google Scholar 

  8. Grosskreutz, H., Lakemeyer, G.: cc-Golog – a logical language dealing with continuous change. Log. J. IGPL 11(2), 179–221 (2003)

    Article  Google Scholar 

  9. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \({\delta }\)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

    Chapter  Google Scholar 

  10. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: a logic programming language for dynamic domains. J. Log. Program. 31, 59–83 (1997)

    Article  MathSciNet  Google Scholar 

  11. Miller, R.: A case study in reasoning about actions and continuous change. In: Wahlster, W. (ed.) Proceedings of ECAI 1996, pp. 624–628 (1996)

    Google Scholar 

  12. Nerode, A.: Logic and control. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 585–597. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73001-9_61

    Chapter  MATH  Google Scholar 

  13. Pinto, J.: Temporal reasoning in the situation calculus. Ph.D. thesis, University of Toronto, Toronto, Canada (1994)

    Google Scholar 

  14. Platzer, A.: A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems. Log. Methods Comput. Sci. 8(4), 1–44 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Autom. Reason. 59(2), 219–265 (2017)

    Article  MathSciNet  Google Scholar 

  16. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT press, Cambridge (2001)

    Book  Google Scholar 

  17. Sandewall, E.: Combining logic and differential equations for describing real-world systems. In: Brachman, R.J., Levesque, H.J., Reiter, R. (eds.) Proceedings of KR 1989, Toronto, Canada, 15–18 May 1989, pp. 412–420. Morgan Kaufmann (1989)

    Google Scholar 

  18. Soutchanski, M.: Execution monitoring of high-level temporal programs. In: Beetz, M., Hertzberg, J. (eds.) Robot Action Planning, Proceedings of the IJCAI-99 Workshop, Stockholm, Sweden, pp. 47–54 (1999)

    Google Scholar 

  19. Teschl, G.: Ordinary differential equations and dynamical systems. AMS (2012). https://www.mat.univie.ac.at/~gerald/ftp/book-ode/ode.pdf

  20. Vallati, M., Magazzeni, D., De Schutter, B., Chrpa, L., McCluskey, T.L.: Efficient macroscopic urban traffic models for reducing congestion: a PDDL+ planning approach. In: AAAI, pp. 3188–3194 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliy Batusov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batusov, V., De Giacomo, G., Soutchanski, M. (2019). Hybrid Temporal Situation Calculus. In: Meurs, MJ., Rudzicz, F. (eds) Advances in Artificial Intelligence. Canadian AI 2019. Lecture Notes in Computer Science(), vol 11489. Springer, Cham. https://doi.org/10.1007/978-3-030-18305-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18305-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18304-2

  • Online ISBN: 978-3-030-18305-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics