Abstract
Performance analysis is an integral part of developing and optimizing parallel applications for high performance computing (HPC) platforms. Hierarchical data from different sources is typically available to identify performance issues or anomalies. Some hierarchical data such as the calling context can be very large in terms of breadth and depth of the hierarchy. Classic tree visualizations quickly reach their limits in analyzing such hierarchies with the abundance of information to display. In this position paper, we identify the challenges commonly faced by the HPC community in visualizing hierarchical performance data, with a focus on calling context trees. Furthermore, we motivate and lay out the bases of a visualization that addresses some of these challenges.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Saviankou, P., Knobloch, M., Visser, A., Mohr, B.: Cube v4: from performance report explorer to performance analysis tool. Procedia Comput. Sci. 51, 1343–1352 (2015)
Ammons, G., Ball, T., Larus, J.R.: Exploiting hardware performance counters with flow and context sensitive profiling. In: Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language Design and Implementation, PLDI 1997, pp. 85–96 (1997)
Mey, D., et al.: Score-P: a unified performance measurement system for petascale applications. In: Bischof, C., Hegering, H.G., Nagel, W., Wittum, G. (eds.) Competence in High Performance Computing, pp. 85–97. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24025-6_8
Schulz, M., Galarowicz, J., Hachfeld, W.: Open, speedshop: open source performance analysis for linux clusters. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC 2006. ACM, New York (2006)
Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized parallel programs. Concurr. Comput. Pract. Exp. 22(6), 685–701 (2010)
Böhme, D., et al.: Caliper: performance introspection for HPC software stacks. In: West, J., Pancake, C.M. (eds.) Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2016, Salt Lake City, UT, USA, 13–18 November 2016, p. 47. ACM (2016)
Alcocer, J.-P.S., Bergel, A., Ducasse, S., Denker, M.: Performance evolution blueprint: understanding the impact of software evolution on performance. In: 2013 First IEEE Working Conference on Software Visualization (VISSOFT), pp. 1–9, September 2013
Blanco, A.F., Alcocer, J.-P.S., Bergel, A.: Effective visualization of object allocation sites. In: Proceedings of 6th IEEE Working Conference on Software Visualization, VISSOFT 2018 (2018)
Szebenyi, Z., Wylie, B.J.N., Wolf, F.: SCALASCA parallel performance analyses of SPEC MPI2007 applications. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW 2008. LNCS, vol. 5119, pp. 99–123. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69814-2_8
Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized parallel programs. Concurr. Comput. Pract. Exp. 22(6), 685–701 (2010). http://hpctoolkit.org
Nguyen, H.T., et al.: VIPACT: a visualization interface for analyzing calling context trees. In: Proceedings of the 3rd Workshop on Visual Performance Analysis, VPA 2016, November 2016
Gralka, P., Schulz, C., Reina, G., Weiskopf, D., Ertl, T.: Visual exploration of memory traces and call stacks. In: 2017 IEEE Working Conference on Software Visualization (VISSOFT), pp. 54–63, September 2017
Gregg, B.: The flame graph. Commun. ACM 59(6), 48–57 (2016)
Tallent, N.R., Mellor-Crummey, J., Franco, M., Landrum, R., Adhianto, L.: Scalable fine-grained call path tracing. In: Proceedings of the International Conference on Supercomputing, ICS 2011, pp. 63–74. ACM, New York (2011)
Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.-C., Solchenbach, K.: VAMPIR: visualization and analysis of MPI resources. Supercomputer 12, 69–80 (1996)
Kruskal, J.B., Landwehr, J.M.: Icicle Plots: better displays for hierarchical clustering. Am. Stat. 37(2), 162–168 (1983)
Trümper, J., Telea, A., Döllner, J.: ViewFusion: correlating structure and activity views for execution traces. In: Proceedings Theory and Practice of Computer Graphics, pp. 45–52 (2012)
De Pauw, W., Jensen, E., Mitchell, N., Sevitsky, G., Vlissides, J., Yang, J.: Visualizing the execution of Java programs. In: Diehl, S. (ed.) Software Visualization. LNCS, vol. 2269, pp. 151–162. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45875-1_12
De Pauw, W., Heisig, S.: Visual and algorithmic tooling for system trace analysis: a case study. ACM SIGOPS Oper. Syst. Rev. 44(1), 97–102 (2010)
De Pauw, W., Heisig, S.: Zinsight: a visual and analytic environment for exploring large event traces. In: Proceedings of the 5th International Symposium on Software Visualization, SOFTVIS, pp. 143–152. ACM, New York (2010)
Adamoli, A., Hauswirth M.: Trevis: a context tree visualization & analysis framework and its use for classifying performance failure reports. In: Proceedings of the 5th International Symposium on Software Visualization, SOFTVIS, pp. 73–82. ACM, New York (2010)
Moret, P., Binder, W., Villazón, A., Ansaloni, D., Heydarnoori, A.: Visualizing and exploring profiles with calling context ring charts. Softw. Pract. Exp. 40(9), 825–847 (2010)
Böhme, D., Geimer, M., Wolf, F., Arnold, L.: Scalasca analysis report for SPEC MPI.2007 benchmark 132.zeump2 on 512 processes in virtual- node mode on Blue Gene/P, April 2018. https://doi.org/10.5281/zenodo.1211448
Müller, M.S., et al.: SPEC MPI2007-an application benchmark suite for parallel systems using MPI. Concurr. Comput. Pract. Exp. 22(2), 191–205 (2010)
Attig, N., et al.: Blue Gene/P: JUGENE. Computational Science Series, pp. 153–188. CRC Press, Taylor & Francis Group, Boca Raton (2013)
Lanza, M., Ducasse, S.: Polymetric views–a lightweight visual approach to reverse engineering. Trans. Softw. Eng. (TSE) 29(9), 782–795 (2003)
Wylie, B.J.N., Geimer, M., Mohr, B., Böhme, D., Szebenyi, Z., Wolf, F.: Scalasca analysis report of the ASCI Sweep3D benchmark on 294,912 processes in virtual-node mode on IBM Blue Gene/P with manually annotated iterations, August 2018
Los Alamos National Laboratory: ASCI SWEEP3D v2.2b: 3-dimensional discrete ordinates neutron transport benchmark (1995). http://wwwc3.lanl.gov/pal/software/sweep3d/
Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: scope and challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 76–90. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71080-6_6
Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.: Visual analytics: definition, process, and challenges. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-5_7
Crespo, A.J.C., Rogers, B., Dominguez, J.M., Gomez-Gesteira, M.: Simulating more than 1 billion SPH particles using GPU hardware acceleration, pp. 249–254 (2013)
Griffin, K., Raskin, C.: Scalable rendering of large SPH simulations using an RK-enhanced interpolation scheme on constrained datasets. In: 2016 IEEE 6th Symposium on Large Data Analysis and Visualization (LDAV), pp. 95–96. IEEE (2016)
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: IEEE Visual Languages, College Park, Maryland, USA, pp. 336–343 (1996)
Bergel, A.: Agile Visualization. LULU Press, Morrisville (2016)
Woodside, M., Franks, G., Petriu, D.C.: The future of software performance engineering. In: Future of Software Engineering, FOSE 2007, pp. 171–187 (2007)
Acknowledgment
The ideas presented in this paper originated during the GI-Dagstuhl Seminar 18283, sponsored by the Gesellschaft für Informatik e.V. (GI), where all the authors on this paper were participants. The first author would like to thank LAM Research for its financial support.
This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG) in context of SFB 716, project D.3, as well as the Priority Programme “DFG-SPP 1593: Design For Future—Managed Software Evolution” (HO 5721/1-1), and by the Excellence Initiative of the German federal and state governments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-756548).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 This is a U.S. government work and not under copyright protection in the United States; foreign copyright protection may apply
About this paper
Cite this paper
Bergel, A. et al. (2019). Visual Analytics Challenges in Analyzing Calling Context Trees. In: Bhatele, A., Boehme, D., Levine, J., Malony, A., Schulz, M. (eds) Programming and Performance Visualization Tools. ESPT ESPT VPA VPA 2017 2018 2017 2018. Lecture Notes in Computer Science(), vol 11027. Springer, Cham. https://doi.org/10.1007/978-3-030-17872-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-17872-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17871-0
Online ISBN: 978-3-030-17872-7
eBook Packages: Computer ScienceComputer Science (R0)