Nothing Special   »   [go: up one dir, main page]

Skip to main content

ModHMM: A Modular Supra-Bayesian Genome Segmentation Method

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11467))

Abstract

Genome segmentation methods are powerful tools to obtain cell type or tissue specific genome-wide annotations and are frequently used to discover regulatory elements. However, traditional segmentation methods show low predictive accuracy and their data-driven annotations have some undesirable properties. As an alternative, we developed ModHMM, a highly modular genome segmentation method. Inspired by the supra-Bayesian approach, it incorporates predictions from a set of classifiers. This allows to compute genome segmentations by utilizing state-of-the-art methodology. We demonstrate the method on ENCODE data and show that it outperforms traditional segmentation methods not only in terms of predictive performance, but also in qualitative aspects. Therefore, ModHMM is a valuable alternative to study the epigenetic and regulatory landscape across and within cell types or tissues. The software is freely available at https://github.com/pbenner/modhmm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersson, R., et al.: An atlas of active enhancers across human cell types and tissues. Nature 507(7493), 455 (2014)

    Article  Google Scholar 

  2. Barski, A., et al.: High-resolution profiling of histone methylations in the human genome. Cell 129(4), 823–837 (2007)

    Article  Google Scholar 

  3. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J.: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10(12), 1213 (2013)

    Article  Google Scholar 

  4. Buenrostro, J.D., Wu, B., Chang, H.Y., Greenleaf, W.J.: ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoco. Mol. Biol. 109(1), 21–29 (2015)

    Google Scholar 

  5. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268(1), 78–94 (1997)

    Article  Google Scholar 

  6. Calo, E., Wysocka, J.: Modification of enhancer chromatin: what, how, and why? Mol. cell 49(5), 825–837 (2013)

    Article  Google Scholar 

  7. Cappé, O., Moulines, E., Rydén, T.: Inference in Hidden Markov Models, vol. 6. Springer, Heidelberg (2005). https://doi.org/10.1007/0-387-28982-8

    Book  MATH  Google Scholar 

  8. Consortium, E.P., et al.: An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414), 57 (2012)

    Article  Google Scholar 

  9. Creyghton, M.P., et al.: Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Nat. Acad. Sci. 107(50), 21931–21936 (2010)

    Article  Google Scholar 

  10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)

    Google Scholar 

  11. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. A Wiley-Interscience Publication, New York (1973)

    MATH  Google Scholar 

  12. Ernst, J., Kellis, M.: ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9(3), 215 (2012)

    Article  Google Scholar 

  13. Ernst, J., Kellis, M.: Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12(12), 2478 (2017)

    Article  Google Scholar 

  14. Galassi, U., Giordana, A., Saitta, L.: Structured hidden markov model: a general framework for modeling complex sequences. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 290–301. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74782-6_26

    Chapter  Google Scholar 

  15. Gelfand, A.E., Mallick, B.K., Dey, D.K.: Modeling expert opinion arising as a partial probabilistic specification. J. Am. Stat. Assoc. 90(430), 598–604 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Genest, C., Zidek, J.V., et al.: Combining probability distributions: a critique and an annotated bibliography. Stat. Sci. 1(1), 114–135 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gorkin, D., et al.: Systematic mapping of chromatin state landscapes during mouse development. bioRxiv p. 166652 (2017)

    Google Scholar 

  18. He, Y., et al.: Improved regulatory element prediction based on tissue-specific local epigenomic signatures. Proc. Nat. Acad. Sci. 114(9), E1633–E1640 (2017)

    Article  Google Scholar 

  19. Heintzman, N.D., et al.: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39(3), 311 (2007)

    Article  Google Scholar 

  20. Heinz, S., Romanoski, C.E., Benner, C., Glass, C.K.: The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16(3), 144 (2015)

    Article  Google Scholar 

  21. Hoffman, M.M., Buske, O.J., Wang, J., Weng, Z., Bilmes, J.A., Noble, W.S.: Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods 9(5), 473 (2012)

    Article  Google Scholar 

  22. Hoffman, M.M., et al.: Integrative annotation of chromatin elements from encode data. Nucleic Acids Res. 41(2), 827–841 (2012)

    Article  Google Scholar 

  23. Jacobs, R.A.: Methods for combining experts’ probability assessments. Neural Comput. 7(5), 867–888 (1995)

    Article  Google Scholar 

  24. Koch, F., et al.: Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat. Struct. Mol. Biol. 18(8), 956 (2011)

    Article  Google Scholar 

  25. Kundaje, A., et al.: Integrative analysis of 111 reference human epigenomes. Nature 518(7539), 317 (2015)

    Article  Google Scholar 

  26. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., Reinberg, D.: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16(22), 2893–2905 (2002)

    Article  Google Scholar 

  27. Lauberth, S.M., et al.: H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152(5), 1021–1036 (2013)

    Article  Google Scholar 

  28. Lindley, D.: The improvement of probability judgements. J. Roy. Stat. Soc. Ser. A (Gen.) 145, 117–126 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lindley, D.: Reconciliation of discrete probability distributions. In: J. Bernardo, M. DeGroot, D. Lindley, A. Smith (eds.) Bayesian statistics 2: Proceedings of the Second Valencia International Meeting, pp. 375–390. Valencia University Press (1985)

    Google Scholar 

  30. Lindley, D.V., Tversky, A., Brown, R.V.: On the reconciliation of probability assessments. J. Roy. Stat. Soc. Ser. A (Gen.) 142, 146–180 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mammana, A., Chung, H.R.: Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome. Genome Biol. 16(1), 151 (2015)

    Article  Google Scholar 

  32. Margueron, R., Reinberg, D.: The polycomb complex PRC2 and its mark in life. Nature 469(7330), 343 (2011)

    Article  Google Scholar 

  33. Maron, M.E.: Automatic indexing: an experimental inquiry. J. ACM (JACM) 8(3), 404–417 (1961)

    Article  MATH  Google Scholar 

  34. Mitchell, T.M.: Machine Learning. McGraw-Hill Boston, MA (1997)

    MATH  Google Scholar 

  35. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B.: Mapping and quantifying mammalian transcriptomes by RNA-seq. Nature Methods 5(7), 621 (2008)

    Article  Google Scholar 

  36. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  37. Ramírez, F., et al.: deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44(W1), W160–W165 (2016)

    Article  Google Scholar 

  38. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia (2016)

    MATH  Google Scholar 

  39. Saksouk, N., Simboeck, E., Déjardin, J.: Constitutive heterochromatin formation and transcription in mammals. Epigenet. Chromatin 8(1), 3 (2015)

    Article  Google Scholar 

  40. Shiraki, T., et al.: Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Nat. Acad. Sci. 100(26), 15776–15781 (2003)

    Article  Google Scholar 

  41. Spyrou, C., Stark, R., Lynch, A.G., Tavaré, S.: BayesPeak: Bayesian analysis of ChIP-seq data. BMC Bioinf. 10(1), 299 (2009)

    Article  Google Scholar 

  42. Valouev, A., et al.: Genome-wide analysis of transcription factor binding sites based on ChIP-seq data. Nat. Methods 5(9), 829 (2008)

    Article  Google Scholar 

  43. Wagner, E.J., Carpenter, P.B.: Understanding the language of Lys36 methylation at histone H3. Nature Rev. Mol. Cell Biol. 13(2), 115 (2012)

    Article  Google Scholar 

  44. Wilbanks, E.G., Facciotti, M.T.: Evaluation of algorithm performance in ChIP-seq peak detection. PloS One 5(7), e11471 (2010)

    Article  Google Scholar 

  45. Won, K.J., et al.: Comparative annotation of functional regions in the human genome using epigenomic data. Nucleic Acids Res. 41(8), 4423–4432 (2013)

    Article  Google Scholar 

  46. Zhang, Y., et al.: Model-based analysis of ChIP-seq (MACS). Genome Biol. 9(9), R137 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Anna Ramisch, Tobias Zehnder, and Verena Heinrich for their comments on the manuscript and many inspiring discussions.

PB was supported by the German Ministry of Education and Research (BMBF, grant no. 01IS18037G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Benner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benner, P., Vingron, M. (2019). ModHMM: A Modular Supra-Bayesian Genome Segmentation Method. In: Cowen, L. (eds) Research in Computational Molecular Biology. RECOMB 2019. Lecture Notes in Computer Science(), vol 11467. Springer, Cham. https://doi.org/10.1007/978-3-030-17083-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17083-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17082-0

  • Online ISBN: 978-3-030-17083-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics