Abstract
Genome segmentation methods are powerful tools to obtain cell type or tissue specific genome-wide annotations and are frequently used to discover regulatory elements. However, traditional segmentation methods show low predictive accuracy and their data-driven annotations have some undesirable properties. As an alternative, we developed ModHMM, a highly modular genome segmentation method. Inspired by the supra-Bayesian approach, it incorporates predictions from a set of classifiers. This allows to compute genome segmentations by utilizing state-of-the-art methodology. We demonstrate the method on ENCODE data and show that it outperforms traditional segmentation methods not only in terms of predictive performance, but also in qualitative aspects. Therefore, ModHMM is a valuable alternative to study the epigenetic and regulatory landscape across and within cell types or tissues. The software is freely available at https://github.com/pbenner/modhmm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andersson, R., et al.: An atlas of active enhancers across human cell types and tissues. Nature 507(7493), 455 (2014)
Barski, A., et al.: High-resolution profiling of histone methylations in the human genome. Cell 129(4), 823–837 (2007)
Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J.: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10(12), 1213 (2013)
Buenrostro, J.D., Wu, B., Chang, H.Y., Greenleaf, W.J.: ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoco. Mol. Biol. 109(1), 21–29 (2015)
Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268(1), 78–94 (1997)
Calo, E., Wysocka, J.: Modification of enhancer chromatin: what, how, and why? Mol. cell 49(5), 825–837 (2013)
Cappé, O., Moulines, E., Rydén, T.: Inference in Hidden Markov Models, vol. 6. Springer, Heidelberg (2005). https://doi.org/10.1007/0-387-28982-8
Consortium, E.P., et al.: An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414), 57 (2012)
Creyghton, M.P., et al.: Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Nat. Acad. Sci. 107(50), 21931–21936 (2010)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)
Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. A Wiley-Interscience Publication, New York (1973)
Ernst, J., Kellis, M.: ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9(3), 215 (2012)
Ernst, J., Kellis, M.: Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12(12), 2478 (2017)
Galassi, U., Giordana, A., Saitta, L.: Structured hidden markov model: a general framework for modeling complex sequences. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 290–301. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74782-6_26
Gelfand, A.E., Mallick, B.K., Dey, D.K.: Modeling expert opinion arising as a partial probabilistic specification. J. Am. Stat. Assoc. 90(430), 598–604 (1995)
Genest, C., Zidek, J.V., et al.: Combining probability distributions: a critique and an annotated bibliography. Stat. Sci. 1(1), 114–135 (1986)
Gorkin, D., et al.: Systematic mapping of chromatin state landscapes during mouse development. bioRxiv p. 166652 (2017)
He, Y., et al.: Improved regulatory element prediction based on tissue-specific local epigenomic signatures. Proc. Nat. Acad. Sci. 114(9), E1633–E1640 (2017)
Heintzman, N.D., et al.: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39(3), 311 (2007)
Heinz, S., Romanoski, C.E., Benner, C., Glass, C.K.: The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16(3), 144 (2015)
Hoffman, M.M., Buske, O.J., Wang, J., Weng, Z., Bilmes, J.A., Noble, W.S.: Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods 9(5), 473 (2012)
Hoffman, M.M., et al.: Integrative annotation of chromatin elements from encode data. Nucleic Acids Res. 41(2), 827–841 (2012)
Jacobs, R.A.: Methods for combining experts’ probability assessments. Neural Comput. 7(5), 867–888 (1995)
Koch, F., et al.: Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat. Struct. Mol. Biol. 18(8), 956 (2011)
Kundaje, A., et al.: Integrative analysis of 111 reference human epigenomes. Nature 518(7539), 317 (2015)
Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., Reinberg, D.: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16(22), 2893–2905 (2002)
Lauberth, S.M., et al.: H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152(5), 1021–1036 (2013)
Lindley, D.: The improvement of probability judgements. J. Roy. Stat. Soc. Ser. A (Gen.) 145, 117–126 (1982)
Lindley, D.: Reconciliation of discrete probability distributions. In: J. Bernardo, M. DeGroot, D. Lindley, A. Smith (eds.) Bayesian statistics 2: Proceedings of the Second Valencia International Meeting, pp. 375–390. Valencia University Press (1985)
Lindley, D.V., Tversky, A., Brown, R.V.: On the reconciliation of probability assessments. J. Roy. Stat. Soc. Ser. A (Gen.) 142, 146–180 (1979)
Mammana, A., Chung, H.R.: Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome. Genome Biol. 16(1), 151 (2015)
Margueron, R., Reinberg, D.: The polycomb complex PRC2 and its mark in life. Nature 469(7330), 343 (2011)
Maron, M.E.: Automatic indexing: an experimental inquiry. J. ACM (JACM) 8(3), 404–417 (1961)
Mitchell, T.M.: Machine Learning. McGraw-Hill Boston, MA (1997)
Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B.: Mapping and quantifying mammalian transcriptomes by RNA-seq. Nature Methods 5(7), 621 (2008)
Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)
Ramírez, F., et al.: deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44(W1), W160–W165 (2016)
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia (2016)
Saksouk, N., Simboeck, E., Déjardin, J.: Constitutive heterochromatin formation and transcription in mammals. Epigenet. Chromatin 8(1), 3 (2015)
Shiraki, T., et al.: Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Nat. Acad. Sci. 100(26), 15776–15781 (2003)
Spyrou, C., Stark, R., Lynch, A.G., Tavaré, S.: BayesPeak: Bayesian analysis of ChIP-seq data. BMC Bioinf. 10(1), 299 (2009)
Valouev, A., et al.: Genome-wide analysis of transcription factor binding sites based on ChIP-seq data. Nat. Methods 5(9), 829 (2008)
Wagner, E.J., Carpenter, P.B.: Understanding the language of Lys36 methylation at histone H3. Nature Rev. Mol. Cell Biol. 13(2), 115 (2012)
Wilbanks, E.G., Facciotti, M.T.: Evaluation of algorithm performance in ChIP-seq peak detection. PloS One 5(7), e11471 (2010)
Won, K.J., et al.: Comparative annotation of functional regions in the human genome using epigenomic data. Nucleic Acids Res. 41(8), 4423–4432 (2013)
Zhang, Y., et al.: Model-based analysis of ChIP-seq (MACS). Genome Biol. 9(9), R137 (2008)
Acknowledgements
We thank Anna Ramisch, Tobias Zehnder, and Verena Heinrich for their comments on the manuscript and many inspiring discussions.
PB was supported by the German Ministry of Education and Research (BMBF, grant no. 01IS18037G).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Benner, P., Vingron, M. (2019). ModHMM: A Modular Supra-Bayesian Genome Segmentation Method. In: Cowen, L. (eds) Research in Computational Molecular Biology. RECOMB 2019. Lecture Notes in Computer Science(), vol 11467. Springer, Cham. https://doi.org/10.1007/978-3-030-17083-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-17083-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17082-0
Online ISBN: 978-3-030-17083-7
eBook Packages: Computer ScienceComputer Science (R0)