Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparing the Estimations of Value-at-Risk Using Artificial Network and Other Methods for Business Sectors

  • Conference paper
  • First Online:
Recent Advances in Big Data and Deep Learning (INNSBDDL 2019)

Part of the book series: Proceedings of the International Neural Networks Society ((INNS,volume 1))

Included in the following conference series:

Abstract

Previous studies on estimating Value-at-Risk mostly focus on the market index or specific portfolio, while few has been done on specific business sectors. In this paper, we compare the Value-at-Risk estimations from different methods, namely Artificial Neural Network model, extreme value theory-based method, and Monte Carlo simulation. We show that while non-parametric approaches such as Monte Carlo simulation performs better marginally, Artificial Neural Network has great potential for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rawls, S.W., Smithson, C.W.: Strategic risk management. J. Appl. Corp. Finan. 2(4), 6–18 (1990)

    Article  Google Scholar 

  2. Nadarajah, S., Chan, S.: Estimation methods for value at risk. In: Extreme Events in Finance, pp. 283–356 (2016)

    Google Scholar 

  3. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econ. 31(3), 307–327 (1986)

    Article  MathSciNet  Google Scholar 

  4. Brooks, C.: Introductory Econometrics for Finance. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  5. Locarek-Junge, H., Prinzler, R.: Estimating value-at-risk using neural networks. In: Informationssysteme in der Finanzwirtschaft, pp. 385–397 (1998)

    Google Scholar 

  6. Chen, X., Lai, K.K., Yen, J.: A statistical neural network approach for value-at-risk analysis. In: International Joint Conference on Computational Sciences and Optimization, vol. 2, pp. 17–21. IEEE (2009)

    Google Scholar 

  7. Iii, J.P.: Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131 (1975)

    Article  MathSciNet  Google Scholar 

  8. Hosking, J.R.M., Wallis, J.R.: Parameter and quantile estimation for the generalized pareto distribution. Technometrics 29(3), 339 (1987)

    Article  MathSciNet  Google Scholar 

  9. Hagan, M.T., Demuth, H.B., Beale, M.H., De Jesús, O.: Neural Network Design, vol. 20 (1996)

    Google Scholar 

  10. White, H.: Nonparametric estimation of conditional quantiles using neural networks. In: Computing Science and Statistics, pp. 190–199 (1992)

    Google Scholar 

  11. Ehm, W., Gneiting, T., Jordan, A., Krüger, F.: Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 78(3), 505–562 (2016)

    Article  MathSciNet  Google Scholar 

  12. Nelson, D.B.: Conditional Heteroskedasticity in asset returns: a new approach. Econometrica 59(2), 347 (1991)

    Article  MathSciNet  Google Scholar 

  13. Kennon, J.: What Are the Sectors and Industries of the S&P 500? The Balance. https://www.thebalance.com/what-are-the-sectors-and-industries-of-the-sandp-500-3957507. Accessed 1 Nov 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu Cheung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheung, S., Chen, Z., Li, Y. (2020). Comparing the Estimations of Value-at-Risk Using Artificial Network and Other Methods for Business Sectors. In: Oneto, L., Navarin, N., Sperduti, A., Anguita, D. (eds) Recent Advances in Big Data and Deep Learning. INNSBDDL 2019. Proceedings of the International Neural Networks Society, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-16841-4_28

Download citation

Publish with us

Policies and ethics