Abstract
Previous studies on estimating Value-at-Risk mostly focus on the market index or specific portfolio, while few has been done on specific business sectors. In this paper, we compare the Value-at-Risk estimations from different methods, namely Artificial Neural Network model, extreme value theory-based method, and Monte Carlo simulation. We show that while non-parametric approaches such as Monte Carlo simulation performs better marginally, Artificial Neural Network has great potential for future development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rawls, S.W., Smithson, C.W.: Strategic risk management. J. Appl. Corp. Finan. 2(4), 6–18 (1990)
Nadarajah, S., Chan, S.: Estimation methods for value at risk. In: Extreme Events in Finance, pp. 283–356 (2016)
Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econ. 31(3), 307–327 (1986)
Brooks, C.: Introductory Econometrics for Finance. Cambridge University Press, Cambridge (2017)
Locarek-Junge, H., Prinzler, R.: Estimating value-at-risk using neural networks. In: Informationssysteme in der Finanzwirtschaft, pp. 385–397 (1998)
Chen, X., Lai, K.K., Yen, J.: A statistical neural network approach for value-at-risk analysis. In: International Joint Conference on Computational Sciences and Optimization, vol. 2, pp. 17–21. IEEE (2009)
Iii, J.P.: Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131 (1975)
Hosking, J.R.M., Wallis, J.R.: Parameter and quantile estimation for the generalized pareto distribution. Technometrics 29(3), 339 (1987)
Hagan, M.T., Demuth, H.B., Beale, M.H., De Jesús, O.: Neural Network Design, vol. 20 (1996)
White, H.: Nonparametric estimation of conditional quantiles using neural networks. In: Computing Science and Statistics, pp. 190–199 (1992)
Ehm, W., Gneiting, T., Jordan, A., Krüger, F.: Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 78(3), 505–562 (2016)
Nelson, D.B.: Conditional Heteroskedasticity in asset returns: a new approach. Econometrica 59(2), 347 (1991)
Kennon, J.: What Are the Sectors and Industries of the S&P 500? The Balance. https://www.thebalance.com/what-are-the-sectors-and-industries-of-the-sandp-500-3957507. Accessed 1 Nov 2018
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Cheung, S., Chen, Z., Li, Y. (2020). Comparing the Estimations of Value-at-Risk Using Artificial Network and Other Methods for Business Sectors. In: Oneto, L., Navarin, N., Sperduti, A., Anguita, D. (eds) Recent Advances in Big Data and Deep Learning. INNSBDDL 2019. Proceedings of the International Neural Networks Society, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-16841-4_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-16841-4_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16840-7
Online ISBN: 978-3-030-16841-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)