Abstract
The visual content of an image is expressed by global or local features. Global features describe some properties of the image such as color, texture and shape. Local features were successfully used for object category recognition and classification to extract the local information from a set of interest points or regions. In this paper, we propose a semi-local method to extract the features based on the previous features extraction methods. Our technique is called the “Spatial Pyramid Matching: SPM”. It works by partitioning the image into increasingly fine sub-regions (or blocs) and computing histograms of global features found inside each bloc.
The results obtained by the proposed method are illustrated through some experiments on Wang and Holidays Dataset. The obtained Results show the simplicity and efficiency of our proposal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Flickner, M., Sawhney, H.S., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: the QBIC system. IEEE Comput. 28, 23–32 (1995)
Gony, J., Cord, M., Philipp-Foliguet, S., Gosselin, P.H., Precioso, F., Jordan, M.: RETIN: a smart interactive digital media retrieval system. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 93–96 (2007)
Hsu, W., Long, L.R., Antani, S.K.: SPIRS: a framework for content-based image retrieval from large biomedical databases. In: (MEDINFO) - Proceedings of the 12th World Congress on Health (Medical) Informatics - Building Sustainable Health Systems, pp. 188–192 (2007)
Deserno, T.M., Guld, M.O., Plodowski, B., Spitzer, K., Wein, B.B., Schubert, H., Ney, H., Seidl, T.: Extended query refinement for medical image retrieval. J. Digit. Imaging 21, 280–289 (2008)
Schettini, R., Ciocca, G., Gagliardi, I.: Feature extraction for content-based image retrieval. In: Encyclopedia of Database Systems, pp. 1115–1119 (2009)
Anh, N.D., Bao, P.T., Nam, B.N., Hoang, N.H.: A new CBIR system using SIFT combined with neural network and graph-based segmentation. In: Intelligent Information and Database Systems, Second International Conference, ACIIDS, pp. 294–301 (2010)
Fung, Y.-H., Chan, Y.-H.: Producing color-indexed images with scalable color and spatial resolutions. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Hong Kong, 16–19 December, pp. 8–13 (2015)
Imran, M., Hashim, R., Khalid, N.E.A.: Segmentation-based fractal texture analysis and color layout descriptor for content based image retrieval. In: 14th International Conference on Intelligent Systems Design and Applications, ISDA, pp. 30–33 (2014)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893 (2005)
Ro, Y.M., Kim, M., Kang, H.K., Manjunath, B.S.: MPEG-7 homogeneous texture descriptor. ETRI J. 23, 41–51 (2001)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, vol. 2, p. 1150 (1999)
David, L.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)
Roy, S.K., Bhattacharya, N., Chanda, B., Chaudhuri, B.B., Ghosh, D.K.: FWLBP: a scale invariant descriptor for texture classification (2018)
Douze, M., Jegou, H., Sandhawalia, H., Amsaleg, L., Schmid, C.: Evaluation of GIST descriptors for web-scale image search. In: Proceedings of the 8th ACM International Conference on Image and Video Retrieval, CIVR, Santorini Island, Greece, 8–10 July, p. 19 (2009)
Delaitre, V., Laptev, I., Sivic, J.: Recognizing human actions in still images: a study of bag-of-features and part-based representations. In: Proceedings of the British Machine Vision Conference, pp. 1–11 (2010)
Wu, C.: SiftGPU: a GPU implementation of scale invariant feature transform (SIFT) (2007)
Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: ECCV, pp. 404–417 (2006)
Uijlings, J.R.R., Smeulders, A.W.M.: Visualising bag-of-words. In: Demo at ICCV (2011)
Li, X.: Image retrieval based on perceptive weighted color blocks. Pattern Recogn. Lett. 24, 1935–1941 (2003)
Takala, V., Ahonen, T., Pietikäinen, M.: Block-based methods for image retrieval using local binary patterns. In: Proceedings of the 14th Scandinavian Conference on Image Analysis (SCIA), pp. 882–891 (2005)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178 (2006)
Yang, J., Li, Y., Tian, Y., Duan, L., Gao, W.: Group-sensitive multiple kernel learning for object categorization. In: ICCV (2009)
Harada, T., Ushiku, Y., Yamashita, Y., Kuniyoshi, Y.: Discriminative spatial pyramid. In: IEEE-CVPR, pp. 1617–1624 (2011)
Doretto, G., Yao, Y.: Region moments: fast invariant descriptors for detecting small image structures. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3019–3026 (2010)
Hur, J., Lim, H., Park, C., Chul Ahn, S.: Generalized deformable spatial pyramid: geometry-preserving dense correspondence estimation. In: IEEE-CVPR, pp. 1392–1400 (2015)
Grauman, K., Darrell, T.: The pyramid match kernel: efficient learning with sets of features. J. Mach. Learn. Res. 8, 725–760 (2007)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Fourth, pp. 147–151 (1988)
Karamti, H., Tmar, M., Visani, M., Urruty, T., Gargouri, F.: Vector space model adaptation and pseudo relevance feedback for content-based image retrieval. Multimed. Tools Appl. 77, 5475–5501 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Karamti, H. (2020). A Semi-local Method for Image Retrieval. In: Abraham, A., Cherukuri, A., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 941. Springer, Cham. https://doi.org/10.1007/978-3-030-16660-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-16660-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16659-5
Online ISBN: 978-3-030-16660-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)