Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Semi-local Method for Image Retrieval

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2018 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 941))

  • 1131 Accesses

Abstract

The visual content of an image is expressed by global or local features. Global features describe some properties of the image such as color, texture and shape. Local features were successfully used for object category recognition and classification to extract the local information from a set of interest points or regions. In this paper, we propose a semi-local method to extract the features based on the previous features extraction methods. Our technique is called the “Spatial Pyramid Matching: SPM”. It works by partitioning the image into increasingly fine sub-regions (or blocs) and computing histograms of global features found inside each bloc.

The results obtained by the proposed method are illustrated through some experiments on Wang and Holidays Dataset. The obtained Results show the simplicity and efficiency of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://lear.inrialpes.fr/~jegou/data.php.

  2. 2.

    http://wang.ist.psu.edu/docs/related/.

References

  1. Flickner, M., Sawhney, H.S., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: the QBIC system. IEEE Comput. 28, 23–32 (1995)

    Article  Google Scholar 

  2. Gony, J., Cord, M., Philipp-Foliguet, S., Gosselin, P.H., Precioso, F., Jordan, M.: RETIN: a smart interactive digital media retrieval system. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 93–96 (2007)

    Google Scholar 

  3. Hsu, W., Long, L.R., Antani, S.K.: SPIRS: a framework for content-based image retrieval from large biomedical databases. In: (MEDINFO) - Proceedings of the 12th World Congress on Health (Medical) Informatics - Building Sustainable Health Systems, pp. 188–192 (2007)

    Google Scholar 

  4. Deserno, T.M., Guld, M.O., Plodowski, B., Spitzer, K., Wein, B.B., Schubert, H., Ney, H., Seidl, T.: Extended query refinement for medical image retrieval. J. Digit. Imaging 21, 280–289 (2008)

    Article  Google Scholar 

  5. Schettini, R., Ciocca, G., Gagliardi, I.: Feature extraction for content-based image retrieval. In: Encyclopedia of Database Systems, pp. 1115–1119 (2009)

    Google Scholar 

  6. Anh, N.D., Bao, P.T., Nam, B.N., Hoang, N.H.: A new CBIR system using SIFT combined with neural network and graph-based segmentation. In: Intelligent Information and Database Systems, Second International Conference, ACIIDS, pp. 294–301 (2010)

    Chapter  Google Scholar 

  7. Fung, Y.-H., Chan, Y.-H.: Producing color-indexed images with scalable color and spatial resolutions. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Hong Kong, 16–19 December, pp. 8–13 (2015)

    Google Scholar 

  8. Imran, M., Hashim, R., Khalid, N.E.A.: Segmentation-based fractal texture analysis and color layout descriptor for content based image retrieval. In: 14th International Conference on Intelligent Systems Design and Applications, ISDA, pp. 30–33 (2014)

    Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893 (2005)

    Google Scholar 

  10. Ro, Y.M., Kim, M., Kang, H.K., Manjunath, B.S.: MPEG-7 homogeneous texture descriptor. ETRI J. 23, 41–51 (2001)

    Article  Google Scholar 

  11. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, vol. 2, p. 1150 (1999)

    Google Scholar 

  12. David, L.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  13. Roy, S.K., Bhattacharya, N., Chanda, B., Chaudhuri, B.B., Ghosh, D.K.: FWLBP: a scale invariant descriptor for texture classification (2018)

    Google Scholar 

  14. Douze, M., Jegou, H., Sandhawalia, H., Amsaleg, L., Schmid, C.: Evaluation of GIST descriptors for web-scale image search. In: Proceedings of the 8th ACM International Conference on Image and Video Retrieval, CIVR, Santorini Island, Greece, 8–10 July, p. 19 (2009)

    Google Scholar 

  15. Delaitre, V., Laptev, I., Sivic, J.: Recognizing human actions in still images: a study of bag-of-features and part-based representations. In: Proceedings of the British Machine Vision Conference, pp. 1–11 (2010)

    Google Scholar 

  16. Wu, C.: SiftGPU: a GPU implementation of scale invariant feature transform (SIFT) (2007)

    Google Scholar 

  17. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: ECCV, pp. 404–417 (2006)

    Google Scholar 

  18. Uijlings, J.R.R., Smeulders, A.W.M.: Visualising bag-of-words. In: Demo at ICCV (2011)

    Google Scholar 

  19. Li, X.: Image retrieval based on perceptive weighted color blocks. Pattern Recogn. Lett. 24, 1935–1941 (2003)

    Article  Google Scholar 

  20. Takala, V., Ahonen, T., Pietikäinen, M.: Block-based methods for image retrieval using local binary patterns. In: Proceedings of the 14th Scandinavian Conference on Image Analysis (SCIA), pp. 882–891 (2005)

    Chapter  Google Scholar 

  21. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178 (2006)

    Google Scholar 

  22. Yang, J., Li, Y., Tian, Y., Duan, L., Gao, W.: Group-sensitive multiple kernel learning for object categorization. In: ICCV (2009)

    Google Scholar 

  23. Harada, T., Ushiku, Y., Yamashita, Y., Kuniyoshi, Y.: Discriminative spatial pyramid. In: IEEE-CVPR, pp. 1617–1624 (2011)

    Google Scholar 

  24. Doretto, G., Yao, Y.: Region moments: fast invariant descriptors for detecting small image structures. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3019–3026 (2010)

    Google Scholar 

  25. Hur, J., Lim, H., Park, C., Chul Ahn, S.: Generalized deformable spatial pyramid: geometry-preserving dense correspondence estimation. In: IEEE-CVPR, pp. 1392–1400 (2015)

    Google Scholar 

  26. Grauman, K., Darrell, T.: The pyramid match kernel: efficient learning with sets of features. J. Mach. Learn. Res. 8, 725–760 (2007)

    MATH  Google Scholar 

  27. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Fourth, pp. 147–151 (1988)

    Google Scholar 

  28. Karamti, H., Tmar, M., Visani, M., Urruty, T., Gargouri, F.: Vector space model adaptation and pseudo relevance feedback for content-based image retrieval. Multimed. Tools Appl. 77, 5475–5501 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanen Karamti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karamti, H. (2020). A Semi-local Method for Image Retrieval. In: Abraham, A., Cherukuri, A., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 941. Springer, Cham. https://doi.org/10.1007/978-3-030-16660-1_16

Download citation

Publish with us

Policies and ethics