Abstract
In this paper, we propose a hybrid optimization algorithm of Harmony Search and Differential applied to three reliability complex system with static, extinctive constraint treatment. The proposed hybrid is contrasted with Harmony Search, Improved Modified Harmony Search, Differential Evolution, Modified Differential Evolution and other algorithms previous employed for Reliability of Complex Systems in the literature. We experimentally found that the proposed hybrid i.e. Improved Modified Harmony Search + Modified Differential Evolution needs less function evaluations as to the contrasted algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bhat, T.R., Venkataramani, D., Ravi, V., Murty, C.V.S.: An improved differential evolution method for efficient parameter estimation in biofilter modeling. Biochem. Eng. J. 28(2), 167–176 (2006)
Chauhan, N., Ravi, V.: Differential evolution and threshold accepting hybrid algorithm for unconstrained optimisation. Int. J. Bio-Inspired Comput. 2(3/4), 169 (2010)
Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE Trans. Evol. Comput. 15(5), 591–607 (2011)
Choudhuri, R., Ravi, V.: A hybrid harmony search and modified great deluge algorithm for unconstrained optimisation. Int. J. Comput. Intell. Res. 6(4), 755–761 (2010)
Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Proceedings of the European Conference on Artificial Life, pp. 134–142 (1991)
Das, S., Mukhopadhyay, A., Roy, A., Abraham, A., Panigrahi, B.K.: Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B 41(1), 89–106 (2011)
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)
Dueck, G., Scheurer, T.: Threshold accepting: a general purpose optimization algorithm. J. Comput. Phys. 90, 161–175 (1990)
Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)
Gendreau, M., Potvin, J.Y.: Handbook of Metaheuristics. Springer, Heidelberg (2010)
Glover, F.: Tabu search - part II. ORSA J. Comput. 2(1), 4–32 (1989)
Glover, F.: Tabu search - part I. ORSA J. Comput. 1(3), 190–206 (1989)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co., Boston (1989)
Horst, R., Pardalos, P.M.: Handbook of Global Optimization. Kluwer Academic Publishers (1995)
Jaya Krishna, G., Vadlamani, R., Nagesh, B.S.: Key generation for plain text in stream cipher via bi-objective evolutionary computing. Appl. Soft Comput. 70, 17 (2018)
Kaveh, A., Talatahari, S.: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput. Struct. 87(5–6), 267–283 (2009)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: International Conference on Neural Networks (ICNN 1995), Piscataway, NJ, pp. 1942–1948. IEEE (1995)
Kim, J.H., Lee, H.M., Jung, D., Sadollah, A.: Performance measures of metaheuristic algorithms (2016)
Kirkpatrick, S., Jtr, C.G., Vecchi, M.: Optimization by simulated annealing (1994)
Jaya Krishna, G., Ravi, V.: Modified harmony search applied to reliability optimization of complex systems. In: Kim, J., Geem, Z. (eds.) Advances in Intelligent Systems and Computing, pp. 169–180. Springer, Berlin, Heidelberg (2015)
Jaya Krishna, G., Ravi, V.: Outlier detection using evolutionary computing. In: Proceedings of the International Conference on Informatics and Analytics – ICIA 2016, pp. 1–6. ACM Press, New York (2016)
Li, H., Li, L.: A novel hybrid particle swarm optimization algorithm combined with harmony search for high dimensional optimization problems. In: The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), Jeju City, South Korea, pp. 94–97. IEEE (2007)
Maheshkumar, Y., Ravi, V., Abraham, A.: A particle swarm optimization-threshold accepting hybrid algorithm for unconstrained optimization. Neural Netw. World 23(3), 191–221 (2013)
Maheshkumar, Y., Ravi, V.: A modified harmony search threshold accepting hybrid optimization algorithm. In: Sombattheera, C., et al. (eds.) Multi-disciplinary Trends in Artificial Intelligence (MIWAI), pp. 298–308. Springer, Hyderabad (2011)
Mohan, C., Shanker, K.: Reliability optimization of complex systems using random search technique. Microelectron. Reliab. 28(4), 513–518 (1988)
Ong, Y.S., Lim, M., Chen, X.: Memetic computation—past, present and future research frontier. IEEE Comput. Intell. Mag. 5(2), 24–31 (2010)
Ravi, V., Reddy, P.J., Zimmermann, H.J.: Fuzzy global optimization of complex system reliability. IEEE Trans. Fuzzy Syst. 8(3), 241–248 (2000)
Ravi, V., Murty, B.S.N., Reddy, J.: Nonequilibrium simulated-annealing algorithm applied to reliability optimization of complex systems. IEEE Trans. Reliab. 46(2), 233–239 (1997)
Ravi, V.: Optimization of complex system reliability by a modified great deluge algorithm. Asia-Pacific J. Oper. Res. 21(04), 487–497 (2004)
Sharma, N., Arun, N., Ravi, V.: An ant colony optimisation and Nelder-Mead simplex hybrid algorithm for training neural networks: an application to bankruptcy prediction in banks. Int. J. Inf. Decis. Sci. 5(2), 188 (2013)
Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D.: Ant algorithm for single and multiobjective reliability optimization problems. Qual. Reliab. Eng. Int. 18(6), 497–514 (2002)
Srinivas, M., Rangaiah, G.P.: Differential evolution with tabu list for global optimization and its application to phase equilibrium and parameter estimation problems. Ind. Eng. Chem. Res. 46(10), 3410–3421 (2007)
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
Tillman, F.A., Hwang, C.L., Kuo, W.: Optimization of Systems Reliability. Marcel Dekker, New York (1980)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jaya Krishna, G., Ravi, V. (2020). Hybrid Evolutionary Algorithm for Optimizing Reliability of Complex Systems. In: Abraham, A., Cherukuri, A., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 941. Springer, Cham. https://doi.org/10.1007/978-3-030-16660-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-16660-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16659-5
Online ISBN: 978-3-030-16660-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)