Abstract
Relation Extraction (RE) is part of Information Extraction (IE) and aims to obtain instances of semantic relations in textual documents. The countless possibilities of relations, the myriad of subjects, the difficulty in identifying emotions and the amount of unstructured and heterogeneous data, have challenged the researchers to define innovative and even more accurate methodologies. This paper presents the evaluation results obtained with a set of RE systems on identifying semantic relations in criminal police reports. We have evaluated different applications with documents in English and Portuguese. The results obtained give us useful insights to continue the research work, and to design the relation extraction system applied to related domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carnaz, G., Nogueira, V., Antunes, M., Ferreira, N.: An automated system for criminal police reports analysis. In: 14th International Conference on Information Assurance and Security, IAS 2018 (2018)
Sarawagi, S., et al.: Information extraction. Found. Trends® Databases 1(3), 261–377 (2008)
Martinez-Rodriguez, J.L., Hogan, A., Lopez-Arevalo, I.: Information extraction meets the semantic web: a survey. Semantic Web (Preprint), 1–81 (2018)
Gruber, T.R.: Ontolingua: a mechanism to support portable ontologies (1992)
Culotta, A., McCallum, A., Betz, J.: Integrating probabilistic extraction models and data mining to discover relations and patterns in text. In: Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, pp. 296–303. Association for Computational Linguistics (2006)
Mota, C., Santos, D.: Desafios na avaliação conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM. In: Desafios na avaliação conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM, chapter: Geo-ontologias e padrões para reconhecimento de locais e de suas relações em textos: o SEI-Geo no Segundo HAREM, p. 436 (2008)
Bruckschen, J.G.M., Souza, R.V., Rigo, S.: Desafios na avaliação conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM. In: Desafios na avaliação conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM, Chapter 14, p. 436 (2008)
Cardoso, N.: Rembrandt - reconhecimento de entidades mencionadas baseado em relações e análise detalhada do texto (2008)
Garcia, M., Gamallo, P.: Evaluating various linguistic features on semantic relation extraction. In: Proceedings of the International Conference Recent Advances in Natural Language Processing 2011, pp. 721–726 (2011)
Souza, E.N.P., Claro, D.B.: Extração de relações utilizando features diferenciadas para Português. Linguamática 6(2), 57–65 (2014)
Collovini, S., Machado, G., Vieira, R.: A sequence model approach to relation extraction in Portuguese. In: LREC (2016)
Sena, C.F.L., Glauber, R., Claro, D.B.: Inference approach to enhance a Portuguese open information extraction. In: Proceedings of the 19th International Conference on Enterprise Information Systems, vol. 1, pp. 442–451 (2017)
Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1535–1545. Association for Computational Linguistics (2011)
Akbik, A., Broß, J.: Wanderlust: extracting semantic relations from natural language text using dependency grammar patterns. In: WWW Workshop, vol. 48 (2009)
Chambers, N., Jurafsky, D.: Template-based information extraction without the templates. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 976–986. Association for Computational Linguistics (2011)
Akbik, A., Löser, A.: Kraken: N-ary facts in open information extraction. In: Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction, pp. 52–56. Association for Computational Linguistics (2012)
Schmitz, M., Bart, R., Soderland, S., Etzioni, O., et al.: Open language learning for information extraction. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 523–534. Association for Computational Linguistics (2012)
Corro, L.D., Gemulla, R.: Clausie: clause-based open information extraction. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 355–366. ACM (2013)
Ta, C.D.C., Thi, T.P.: Identifying the semantic relations on unstructrured data. Int. J. Inf. 4(3), 1–10 (2014)
Augenstein, I., Maynard, D., Ciravegna, F.: Distantly supervised web relation extraction for knowledge base population. Semant. Web 7(4), 335–349 (2016)
Gamallo, P., González, M.G.: Linguakit: uma ferramenta multilingue para a análise linguística ea extração de informação (2017)
da Conceição Rodrigues, R.M.: RAPPORT: a fact-based question answering system for Portuguese. Ph.D. thesis, Universidade de Coimbra (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Carnaz, G., Quaresma, P., Beires Nogueira, V., Antunes, M., Fonseca Ferreira, N.N.M. (2019). A Review on Relations Extraction in Police Reports. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds) New Knowledge in Information Systems and Technologies. WorldCIST'19 2019. Advances in Intelligent Systems and Computing, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-030-16181-1_47
Download citation
DOI: https://doi.org/10.1007/978-3-030-16181-1_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16180-4
Online ISBN: 978-3-030-16181-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)