Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Review on Relations Extraction in Police Reports

  • Conference paper
  • First Online:
New Knowledge in Information Systems and Technologies (WorldCIST'19 2019)

Abstract

Relation Extraction (RE) is part of Information Extraction (IE) and aims to obtain instances of semantic relations in textual documents. The countless possibilities of relations, the myriad of subjects, the difficulty in identifying emotions and the amount of unstructured and heterogeneous data, have challenged the researchers to define innovative and even more accurate methodologies. This paper presents the evaluation results obtained with a set of RE systems on identifying semantic relations in criminal police reports. We have evaluated different applications with documents in English and Portuguese. The results obtained give us useful insights to continue the research work, and to design the relation extraction system applied to related domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

     https://wiki.dbpedia.org/.

  2. 2.

     https://www.linguateca.pt/cetenfolha/.

  3. 3.

     https://opennlp.apache.org/.

  4. 4.

     http://knowitall.github.io/ollie/.

  5. 5.

     http://reverb.cs.washington.edu/.

  6. 6.

     https://github.com/citiususc/Linguakit.

  7. 7.

     https://gramatica.usc.es/pln/.

References

  1. Carnaz, G., Nogueira, V., Antunes, M., Ferreira, N.: An automated system for criminal police reports analysis. In: 14th International Conference on Information Assurance and Security, IAS 2018 (2018)

    Google Scholar 

  2. Sarawagi, S., et al.: Information extraction. Found. Trends® Databases 1(3), 261–377 (2008)

    Article  Google Scholar 

  3. Martinez-Rodriguez, J.L., Hogan, A., Lopez-Arevalo, I.: Information extraction meets the semantic web: a survey. Semantic Web (Preprint), 1–81 (2018)

    Google Scholar 

  4. Gruber, T.R.: Ontolingua: a mechanism to support portable ontologies (1992)

    Google Scholar 

  5. Culotta, A., McCallum, A., Betz, J.: Integrating probabilistic extraction models and data mining to discover relations and patterns in text. In: Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, pp. 296–303. Association for Computational Linguistics (2006)

    Google Scholar 

  6. Mota, C., Santos, D.: Desafios na avaliação conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM. In: Desafios na avaliação conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM, chapter: Geo-ontologias e padrões para reconhecimento de locais e de suas relações em textos: o SEI-Geo no Segundo HAREM, p. 436 (2008)

    Google Scholar 

  7. Bruckschen, J.G.M., Souza, R.V., Rigo, S.: Desafios na avaliação conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM. In: Desafios na avaliação conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM, Chapter 14, p. 436 (2008)

    Google Scholar 

  8. Cardoso, N.: Rembrandt - reconhecimento de entidades mencionadas baseado em relações e análise detalhada do texto (2008)

    Google Scholar 

  9. Garcia, M., Gamallo, P.: Evaluating various linguistic features on semantic relation extraction. In: Proceedings of the International Conference Recent Advances in Natural Language Processing 2011, pp. 721–726 (2011)

    Google Scholar 

  10. Souza, E.N.P., Claro, D.B.: Extração de relações utilizando features diferenciadas para Português. Linguamática 6(2), 57–65 (2014)

    Google Scholar 

  11. Collovini, S., Machado, G., Vieira, R.: A sequence model approach to relation extraction in Portuguese. In: LREC (2016)

    Google Scholar 

  12. Sena, C.F.L., Glauber, R., Claro, D.B.: Inference approach to enhance a Portuguese open information extraction. In: Proceedings of the 19th International Conference on Enterprise Information Systems, vol. 1, pp. 442–451 (2017)

    Google Scholar 

  13. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1535–1545. Association for Computational Linguistics (2011)

    Google Scholar 

  14. Akbik, A., Broß, J.: Wanderlust: extracting semantic relations from natural language text using dependency grammar patterns. In: WWW Workshop, vol. 48 (2009)

    Google Scholar 

  15. Chambers, N., Jurafsky, D.: Template-based information extraction without the templates. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 976–986. Association for Computational Linguistics (2011)

    Google Scholar 

  16. Akbik, A., Löser, A.: Kraken: N-ary facts in open information extraction. In: Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction, pp. 52–56. Association for Computational Linguistics (2012)

    Google Scholar 

  17. Schmitz, M., Bart, R., Soderland, S., Etzioni, O., et al.: Open language learning for information extraction. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 523–534. Association for Computational Linguistics (2012)

    Google Scholar 

  18. Corro, L.D., Gemulla, R.: Clausie: clause-based open information extraction. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 355–366. ACM (2013)

    Google Scholar 

  19. Ta, C.D.C., Thi, T.P.: Identifying the semantic relations on unstructrured data. Int. J. Inf. 4(3), 1–10 (2014)

    Google Scholar 

  20. Augenstein, I., Maynard, D., Ciravegna, F.: Distantly supervised web relation extraction for knowledge base population. Semant. Web 7(4), 335–349 (2016)

    Article  Google Scholar 

  21. Gamallo, P., González, M.G.: Linguakit: uma ferramenta multilingue para a análise linguística ea extração de informação (2017)

    Google Scholar 

  22. da Conceição Rodrigues, R.M.: RAPPORT: a fact-based question answering system for Portuguese. Ph.D. thesis, Universidade de Coimbra (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo Carnaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carnaz, G., Quaresma, P., Beires Nogueira, V., Antunes, M., Fonseca Ferreira, N.N.M. (2019). A Review on Relations Extraction in Police Reports. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds) New Knowledge in Information Systems and Technologies. WorldCIST'19 2019. Advances in Intelligent Systems and Computing, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-030-16181-1_47

Download citation

Publish with us

Policies and ethics