Abstract
In this paper, we propose a Variational Deep Collaborative Matrix Factorization (VDCMF) algorithm for social recommendation that infers latent factors more effectively than existing methods by incorporating users’ social trust information and items’ content information into a unified generative framework. Unlike neural network-based algorithms, our model is not only effective in capturing the non-linearity among correlated variables but also powerful in predicting missing values under the robust collaborative inference. Specifically, we use variational auto-encoder to extract the latent representations of content and then incorporate them into traditional social trust factorization. We propose an efficient expectation-maximization inference algorithm to learn the model’s parameters and approximate the posteriors of latent factors. Experiments on two sparse datasets show that our VDCMF significantly outperforms major state-of-the-art CF methods for recommendation accuracy on common metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)
Chen, C., Zheng, X., Wang, Y., Hong, F., Lin, Z., et al.: Context-aware collaborative topic regression with social matrix factorization for recommender systems. In: AAAI, pp. 9–15 (2014)
Chen, M., Weinberger, K., Sha, F., Bengio, Y.: Marginalized denoising auto-encoders for nonlinear representations. In: International Conference on Machine Learning, pp. 1476–1484 (2014)
Chen, Y., de Rijke, M.: A collective variational autoencoder for top-n recommendation with side information. In: Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems, pp. 3–9. ACM (2018)
Croft, W.B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice. Addison-Wesley, Reading (2015)
Dayan, P., Hinton, G.E., Neal, R.M., Zemel, R.S.: The Helmholtz machine. Neural Comput. 7(5), 889–904 (1995)
Doersch, C.: Tutorial on variational autoencoders. CoRR abs/1606.05908 (2016)
Gershman, S., Goodman, N.: Amortized inference in probabilistic reasoning. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 36 (2014)
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: WWW, pp. 173–182 (2017)
Hu, G.N., et al.: Collaborative filtering with topic and social latent factors incorporating implicit feedback. ACM Trans. Knowl. Discov. Data (TKDD) 12(2), 23 (2018)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
Li, S., Kawale, J., Fu, Y.: Deep collaborative filtering via marginalized denoising auto-encoder. In: CIKM, pp. 811–820 (2015)
Li, X., She, J.: Collaborative variational autoencoder for recommender systems. In: KDD, pp. 305–314 (2017)
Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp. 689–698. International World Wide Web Conferences Steering Committee (2018)
Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: social recommendation using probabilistic matrix factorization. In: CIKM, pp. 931–940 (2008)
Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: WSDM, pp. 287–296 (2011)
Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: NIPS, pp. 1257–1264 (2008)
Purushotham, S., Liu, Y., Kuo, C.C.J.: Collaborative topic regression with social matrix factorization for recommendation systems. In: ICML, pp. 691–698 (2012)
da Silva, E.S., Langseth, H., Ramampiaro, H.: Content-based social recommendation with poisson matrix factorization. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 530–546. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_32
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)
Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: KDD, pp. 448–456 (2011)
Wang, H., Chen, B., Li, W.J.: Collaborative topic regression with social regularization for tag recommendation. In: IJCAI, pp. 2719–2725 (2013)
Wang, H., Shi, X., Yeung, D.Y.: Relational stacked denoising autoencoder for tag recommendation. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)
Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender systems. In: KDD, pp. 1235–1244 (2015)
Wu, H., Yue, K., Pei, Y., Li, B., Zhao, Y., Dong, F.: Collaborative topic regression with social trust ensemble for recommendation in social media systems. Knowl.-Based Syst. 97, 111–122 (2016)
Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: KDD, pp. 353–362 (2016)
Acknowledgement
This work is supported by the National Key Research and Development Program of China (No. #2017YFB0203201) and Australian Research Council Discovery Project DP150104871.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Xiao, T., Tian, H., Shen, H. (2019). Variational Deep Collaborative Matrix Factorization for Social Recommendation. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11439. Springer, Cham. https://doi.org/10.1007/978-3-030-16148-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-16148-4_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16147-7
Online ISBN: 978-3-030-16148-4
eBook Packages: Computer ScienceComputer Science (R0)