Nothing Special   »   [go: up one dir, main page]

Skip to main content

Variational Deep Collaborative Matrix Factorization for Social Recommendation

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11439))

Included in the following conference series:

Abstract

In this paper, we propose a Variational Deep Collaborative Matrix Factorization (VDCMF) algorithm for social recommendation that infers latent factors more effectively than existing methods by incorporating users’ social trust information and items’ content information into a unified generative framework. Unlike neural network-based algorithms, our model is not only effective in capturing the non-linearity among correlated variables but also powerful in predicting missing values under the robust collaborative inference. Specifically, we use variational auto-encoder to extract the latent representations of content and then incorporate them into traditional social trust factorization. We propose an efficient expectation-maximization inference algorithm to learn the model’s parameters and approximate the posteriors of latent factors. Experiments on two sparse datasets show that our VDCMF significantly outperforms major state-of-the-art CF methods for recommendation accuracy on common metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.lastfm.com.

  2. 2.

    http://www.Epinions.com.

References

  1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    MATH  Google Scholar 

  2. Chen, C., Zheng, X., Wang, Y., Hong, F., Lin, Z., et al.: Context-aware collaborative topic regression with social matrix factorization for recommender systems. In: AAAI, pp. 9–15 (2014)

    Google Scholar 

  3. Chen, M., Weinberger, K., Sha, F., Bengio, Y.: Marginalized denoising auto-encoders for nonlinear representations. In: International Conference on Machine Learning, pp. 1476–1484 (2014)

    Google Scholar 

  4. Chen, Y., de Rijke, M.: A collective variational autoencoder for top-n recommendation with side information. In: Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems, pp. 3–9. ACM (2018)

    Google Scholar 

  5. Croft, W.B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice. Addison-Wesley, Reading (2015)

    Google Scholar 

  6. Dayan, P., Hinton, G.E., Neal, R.M., Zemel, R.S.: The Helmholtz machine. Neural Comput. 7(5), 889–904 (1995)

    Article  Google Scholar 

  7. Doersch, C.: Tutorial on variational autoencoders. CoRR abs/1606.05908 (2016)

    Google Scholar 

  8. Gershman, S., Goodman, N.: Amortized inference in probabilistic reasoning. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 36 (2014)

    Google Scholar 

  9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: WWW, pp. 173–182 (2017)

    Google Scholar 

  10. Hu, G.N., et al.: Collaborative filtering with topic and social latent factors incorporating implicit feedback. ACM Trans. Knowl. Discov. Data (TKDD) 12(2), 23 (2018)

    Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  12. Li, S., Kawale, J., Fu, Y.: Deep collaborative filtering via marginalized denoising auto-encoder. In: CIKM, pp. 811–820 (2015)

    Google Scholar 

  13. Li, X., She, J.: Collaborative variational autoencoder for recommender systems. In: KDD, pp. 305–314 (2017)

    Google Scholar 

  14. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp. 689–698. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  15. Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: social recommendation using probabilistic matrix factorization. In: CIKM, pp. 931–940 (2008)

    Google Scholar 

  16. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: WSDM, pp. 287–296 (2011)

    Google Scholar 

  17. Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: NIPS, pp. 1257–1264 (2008)

    Google Scholar 

  18. Purushotham, S., Liu, Y., Kuo, C.C.J.: Collaborative topic regression with social matrix factorization for recommendation systems. In: ICML, pp. 691–698 (2012)

    Google Scholar 

  19. da Silva, E.S., Langseth, H., Ramampiaro, H.: Content-based social recommendation with poisson matrix factorization. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 530–546. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_32

    Chapter  Google Scholar 

  20. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: KDD, pp. 448–456 (2011)

    Google Scholar 

  22. Wang, H., Chen, B., Li, W.J.: Collaborative topic regression with social regularization for tag recommendation. In: IJCAI, pp. 2719–2725 (2013)

    Google Scholar 

  23. Wang, H., Shi, X., Yeung, D.Y.: Relational stacked denoising autoencoder for tag recommendation. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  24. Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender systems. In: KDD, pp. 1235–1244 (2015)

    Google Scholar 

  25. Wu, H., Yue, K., Pei, Y., Li, B., Zhao, Y., Dong, F.: Collaborative topic regression with social trust ensemble for recommendation in social media systems. Knowl.-Based Syst. 97, 111–122 (2016)

    Article  Google Scholar 

  26. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: KDD, pp. 353–362 (2016)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key Research and Development Program of China (No. #2017YFB0203201) and Australian Research Council Discovery Project DP150104871.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, T., Tian, H., Shen, H. (2019). Variational Deep Collaborative Matrix Factorization for Social Recommendation. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11439. Springer, Cham. https://doi.org/10.1007/978-3-030-16148-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16148-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16147-7

  • Online ISBN: 978-3-030-16148-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics