Nothing Special   »   [go: up one dir, main page]

Skip to main content

One Shot Learning with Margin

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11440))

Included in the following conference series:

Abstract

One shot learning is a task of learning from a few examples, which poses a great challenge for current machine learning algorithms. One of the most effective approaches for one shot learning is metric learning. But metric-based approaches suffer from data shortage problem in one shot scenario. To alleviate this problem, we propose one shot learning with margin. The margin is beneficial to learn a more discriminative metric space. We integrate the margin into two representative one shot learning models, prototypical networks and matching networks, to enhance their generalization ability. Experimental results on benchmark datasets show that margin effectively boosts the performance of one shot learning models.

Supported by National Science Foundation of China (No. 61632019; No. 61876028; No. 61806034) and Foundation of Department of Education of Liaoning Province (No. L2015001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  2. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  3. Edwards, H., Storkey, A.: Towards a neural statistician. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  4. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning (ICML), pp. 1126–1135 (2017)

    Google Scholar 

  5. Goldberger, J., Hinton, G.E., Roweis, S.T., Salakhutdinov, R.R.: Neighbourhood components analysis. In: Advances in Neural Information Processing Systems (NIPS), pp. 513–520 (2005)

    Google Scholar 

  6. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  11. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

    Google Scholar 

  12. Kulis, B., et al.: Metric learning: a survey. Found. Trends® Mach. Learn. 5(4), 287–364 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple visual concepts. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 33 (2011)

    Google Scholar 

  14. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, H., Zhang, X., Zhang, X., Cui, Y.: Self-adapted mixture distance measure for clustering uncertain data. Knowl.-Based Syst. 126, 33–47 (2017)

    Article  Google Scholar 

  16. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1 (2017)

    Google Scholar 

  17. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: International Conference on Machine Learning (ICML), pp. 507–516 (2016)

    Google Scholar 

  18. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  19. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  20. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)

  21. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  22. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  23. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  24. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  25. Salakhutdinov, R., Hinton, G.: Learning a nonlinear embedding by preserving class neighbourhood structure. In: Artificial Intelligence and Statistics, pp. 412–419 (2007)

    Google Scholar 

  26. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: International Conference on Machine Learning (ICML), pp. 1842–1850 (2016)

    Google Scholar 

  27. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)

    Google Scholar 

  28. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 4080–4090 (2017)

    Google Scholar 

  29. Sohn, K.: Improved deep metric learning with multi-class N-pair loss objective. In: Advances in Neural Information Processing Systems (NIPS), pp. 1857–1865 (2016)

    Google Scholar 

  30. Triantafillou, E., Zemel, R., Urtasun, R.: Few-shot learning through an information retrieval lens. In: Advances in Neural Information Processing Systems (NIPS), pp. 2252–2262 (2017)

    Google Scholar 

  31. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 3630–3638 (2016)

    Google Scholar 

  32. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10(Feb), 207–244 (2009)

    MATH  Google Scholar 

  33. Yang, L., Jin, R.: Distance metric learning: a comprehensive survey. Mich. State Univ. 2(2), 4 (2006)

    Google Scholar 

  34. Zhang, X., Zhang, X., Liu, H.: Self-adapted multi-task clustering. In: IJCAI, pp. 2357–2363 (2016)

    Google Scholar 

  35. Zhang, X., Zhang, X., Liu, H., Liu, X.: Multi-task clustering through instances transfer. Neurocomputing 251, 145–155 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxin Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Nie, J., Zong, L., Yu, H., Liang, W. (2019). One Shot Learning with Margin. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11440. Springer, Cham. https://doi.org/10.1007/978-3-030-16145-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16145-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16144-6

  • Online ISBN: 978-3-030-16145-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics