Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Variable Neighborhood Search Approach for Solving the Multidimensional Multi-Way Number Partitioning Problem

  • Conference paper
  • First Online:
Variable Neighborhood Search (ICVNS 2018)

Abstract

This paper presents an implementation of the Variable Neighborhood Search (VNS) metaheuristic for solving the optimization version of the Multidimensional Multi-Way Number Partitioning Problem (MDMWNPP). This problem consists in distributing the vectors of a given sequence into k disjoint subsets such that the sums of each subset form a set of vectors with minimum diameter. The proposed VNS for solving MDMWNPP has a good performance over instances with three and four subsets. A comparative study of results found from this proposed VNS and an implementation of Memetic Algorithm (MA) is carried out, running in the same proportional time interval. Although the average results are different, the statistical tests show that results of the proposed VNS are not significantly better than MA in a set of instances analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://browser.geekbench.com/processors/748.

  2. 2.

    https://browser.geekbench.com/processors/309.

References

  1. Faria, A.F., de Souza, S.R., Silva, C.A.: Variable neighborhood descent applied to multi-way number partitioning problem. Electron. Notes Discret. Math. 66, 103–110 (2018). https://doi.org/10.1016/j.endm.2018.03.014. 5th International Conference on Variable Neighborhood Search

    Article  MathSciNet  MATH  Google Scholar 

  2. Gent, I.P., Walsh, T.: Analysis of heuristics for number partitioning. Comput. Intell. 14(3), 430–451 (1998)

    Article  MathSciNet  Google Scholar 

  3. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. XLV(9), 1563–1581 (1966)

    Article  Google Scholar 

  4. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17(2), 416–429 (1969)

    Article  MathSciNet  Google Scholar 

  5. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM (JACM) 21(2), 277–292 (1974)

    Article  MathSciNet  Google Scholar 

  6. Karmarkar, N., Karp, R.M.: The differencing method of set partition. Report UCB/CSD 81/113, Computer Science Division, University of California, Berkeley, CA (1982)

    Google Scholar 

  7. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Proceedings of a Symposium on the Complexity of Computer Computations. The IBM Research Symposia, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  8. Kojić, J.: Integer linear programming model for multidimensional two-way number partitioning problem. Comput. Math. Appl. 60(8), 2302–2308 (2010)

    Article  MathSciNet  Google Scholar 

  9. Korf, R.E.: A complete anytime algorithm for number partitioning. Artif. Intell. 106(2), 181–203 (1998)

    Article  MathSciNet  Google Scholar 

  10. Korf, R.E.: Multi-way number partitioning. In: Proceedings of the 21st International Joint Conference on Artifical Intelligence (IJCAI 2009), pp. 538–543 (2009)

    Google Scholar 

  11. Korf, R.E., Schreiber, E.L., Moffitt, M.D.: Optimal sequential multi-way number partitioning. In: Proceedings of the International Symposium on Artificial Intelligence and Mathematics (ISAIM-2014) (2014)

    Google Scholar 

  12. Kratica, J., Kojic, J., Savic, A.: Two metaheuristic approaches for solving multidimensional two-way number partitioning problem. Comput. Oper. Res. 46, 59–68 (2014)

    Article  MathSciNet  Google Scholar 

  13. Labs, P.: Geekbench, May 2018. https://browser.geekbench.com/

  14. Mertens, S.: A complete anytime algorithm for balanced number partitioning (1999). http://arxiv.org/abs/cs.DS/9903011

  15. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  Google Scholar 

  16. Moffitt, M.D.: Search strategies for optimal multi-way number partitioning. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 623–629. AAAI Press (2013)

    Google Scholar 

  17. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms: For Computers and Calculators. Academic Press, Cambridge (2014)

    MATH  Google Scholar 

  18. Orlov, M.: Efficient generation of set partitions. Technical report, Faculty of Engineering and Computer Sciences, University of Ulm (2002). http://www.cs.bgu.ac.il/~orlovm/papers/partitions.pdf

  19. Pedroso, J.P., Kubo, M.: Heuristics and exact methods for number partitioning. Eur. J. Oper. Res. 202(1), 73–81 (2010)

    Article  MathSciNet  Google Scholar 

  20. Pop, P.C., Matei, O.: A memetic algorithm approach for solving the multidimensional multi-way number partitioning problem. Appl. Math. Modell. 37(22), 9191–9202 (2013)

    Article  MathSciNet  Google Scholar 

  21. Rodriguez, F.J., Glover, F., García-Martínez, C., Martí, R., Lozano, M.: GRASP with exterior path-relinking and restricted local search for the multidimensional two-way number partitioning problem. Comput. Oper. Res. 78, 243–254 (2017)

    Article  MathSciNet  Google Scholar 

  22. Schreiber, E.L.: Optimal Multi-Way Number Partitioning. Ph.D. thesis, University of California Los Angeles (2014)

    Google Scholar 

  23. Schreiber, E.L., Korf, R.E.: Cached iterative weakening for optimal multi-way number partitioning. In: Proceedings of the Twenty-Eighth Annual Conference on Artificial Intelligence (AAAI-2014), Quebec City, Canada (2014)

    Google Scholar 

  24. Schroeppel, R., Shamir, A.: A \({T}={O}(2^{n/2})\), \({S}={O}(2^{n/4})\) algorithm for certain NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

    Article  MathSciNet  Google Scholar 

  25. Sloane, N.: On-Line Encyclopedia of Integer Sequences (1991). https://oeis.org/

Download references

Acknowledgements

The authors would like to thank the CAPES Foundation, the Brazilian Council of Technological and Scientific Development (CNPq), the Minas Gerais State Research Foundation (FAPEMIG), the Federal Center of Technological Education of Minas Gerais (CEFET-MG), and the Federal University of Ouro Preto (UFOP) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Ricardo de Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faria, A.F., de Souza, S.R., Souza, M.J.F., Silva, C.A., Nazário Coelho, V. (2019). A Variable Neighborhood Search Approach for Solving the Multidimensional Multi-Way Number Partitioning Problem. In: Sifaleras, A., Salhi, S., Brimberg, J. (eds) Variable Neighborhood Search. ICVNS 2018. Lecture Notes in Computer Science(), vol 11328. Springer, Cham. https://doi.org/10.1007/978-3-030-15843-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15843-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15842-2

  • Online ISBN: 978-3-030-15843-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics