Abstract
Machine learning becomes an effective method to detect malicious traffic. With the proliferation of network traffic, malicious traffic categories are greatly increased, which puts forward higher requirements for the computation time and detection accuracy of machine learning. A feature selection framework is proposed to balance the computation time and detection accuracy. First, we construct a feature repository of traffic information with high dimensions. In order to reduce the computation time and minimize the loss of accuracy, we investigate the feature selection algorithms. The algorithm based on chi-square test and xgboost algorithm are adopted to evaluate the proposal. The experiments on CTU dataset show that the proposal can reduce the computation time while ensuring the accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yang, X.N., Wang, W., Xu, X.F., Pang, G.R., Zhang, C.L.: Research on the construction of a novel cyberspace security ecosystem. Engineering 4(1), 47–52 (2018)
Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to accelerate multiple regular expressions matching for deep packet inspection, vol. 36, pp. 339–350. ACM (2006)
Bujlow, T., Carela-Español, V., Barlet-Ros, P.: Independent comparison of popular dpi tools for traffic classification. Comput. Netw. 76, 75–89 (2015)
Khan, S., Rahmani, H., Shah, S.A.A., Bennamoun, M.: A guide to convolutional neural networks for computer vision. Synth. Lect. Comput. Vis. 8(1), 1–207 (2018)
Abdelaziz, A.H.: Comparing fusion models for dnn-based audiovisual continuous speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 26(3), 475–484 (2018)
Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural language processing (review article). IEEE Comput. Intelli. Mag. 13(3), 55–75 (2018)
Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2017)
Nishani, L., Biba, M.: Machine learning for intrusion detection in manet: a state-of-the-art survey. J. Intell. Inf. Syst. 46(2), 391–407 (2016)
Wang, M., Cui, Y., Wang, X., Xiao, S., Jiang, J.: Machine learning for networking: workflow, advances and opportunities. IEEE Network, PP(99), 1–8 (2017)
Wang, Y., Xiang, Y., Yu, S.Z.: An automatic application signature construction system for unknown traffic. Concurr. Comput. Pract. Exp. 22(13), 1927–1944 (2010)
Moore, A.W., Papagiannaki, K.: Toward the accurate identification of network applications. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 41–54. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31966-5_4
Sen, S., Spatscheck, O., Wang, D.: Accurate, scalable in-network identification of P2P traffic using application signatures. In: Proceedings of ACM WWW (2004)
Tongaonkar, A., Torres, R., Iliofotou, M., Keralapura, R., Nucci, A.: Towards self adaptive network traffic classification. Comput. Commun. 56, 35–46 (2015)
Gomes, J.V., Pereira, M., Monteiro, P.P.: Detection and classification of peer-to-peer traffic:a survey. ACM Comput. Surv. 45(3), 1–40 (2013)
Xu, C., Chen, S., Su, J., Yiu, S.M., Hui, L.C.K.: A survey on regular expression matching for deep packet inspection: applications, algorithms, and hardware platforms. IEEE Commun. Surv. Tutor. 18(4), 2991–3029 (2016)
Rodrigues, G.P., et al.: Cybersecurity and network forensics: analysis of malicious traffic towards a honeynet with deep packet inspection. Appl. Sci. 7(10), 1082 (2017)
Finamore, A., Mellia, M., Meo, M.: Mining unclassified traffic using automatic clustering techniques. In: Domingo-Pascual, J., Shavitt, Y., Uhlig, S. (eds.) TMA 2011. LNCS, vol. 6613, pp. 150–163. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20305-3_13
Erman, J., Mahanti, A., Arlitt, M., Williamson, C.: Identifying and discriminating between web and peer-to-peer traffic in the network core. In: International Conference on World Wide Web, pp. 883–892. ACM (2007)
Xu, B., Chen, S., Zhang, H., Wu, T.: Incremental k-NN SVM method in intrusion detection. In: IEEE International Conference on Software Engineering and Service Science, pp. 712–717. IEEE (2017)
Yang, L.: Network anomaly traffic detection algorithm based on SVM. In: International Conference on Robots and Intelligent System, pp. 217–220. IEEE Computer Society (2017)
Ali, M.H., Mohammed, B.A.D.A., Ismail, M.A.B., Zolkipli, M.F.: A new intrusion detection system based on fast learning network and particle swarm optimization. IEEE Access, PP(99), 1–1 (2018)
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of IEEE International Joint Conference on Neural Networks, 2004, vol. 2, pp. 985–990. IEEE (2005)
Umer, M.F., Sher, M., Bi, Y.: A two-stage flow-based intrusion detection model for next-generation networks. Plos One 13(1), e0180945 (2018)
Alshammari, R., Zincir-Heywood, A.N.: Identification of voip encrypted traffic using a machine learning approach. J. King Saud Univ. Comput. Inf. Sci. 27(1), 77–92 (2015)
Liu, Y., Chen, J., Chang, P., Yun, X.: A novel algorithm for encrypted traffic classification based on sliding window of flow’s first N packets. In: IEEE International Conference on Computational Intelligence and Applications, pp. 463–470. IEEE (2017)
Aceto, G., Ciuonzo, D., Montieri, A., Pescapé, A.: Multi-classification approaches for classifying mobile app traffic. J. Netw. Comput. Appl. 103, 131–145 (2017)
Sperotto, A., Sadre, R., van Vliet, F., Pras, A.: A labeled data set for flow-based intrusion detection. In: Nunzi, G., Scoglio, C., Li, X. (eds.) IPOM 2009. LNCS, vol. 5843, pp. 39–50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04968-2_4
Acknowledgements
The research is funded by the National Natural Science Foundation of China (Grant No. 61372117).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, S., Zhang, Y., Jin, L., Wang, X., Song, M., Guo, D. (2019). A Systematic Framework for Malicious Traffic Detection Based on Feature Repository. In: Tang, Y., Zu, Q., Rodríguez García, J. (eds) Human Centered Computing. HCC 2018. Lecture Notes in Computer Science(), vol 11354. Springer, Cham. https://doi.org/10.1007/978-3-030-15127-0_60
Download citation
DOI: https://doi.org/10.1007/978-3-030-15127-0_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15126-3
Online ISBN: 978-3-030-15127-0
eBook Packages: Computer ScienceComputer Science (R0)