Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhancing Decision Boundary Setting for Binary Text Classification

  • Conference paper
  • First Online:
AI 2018: Advances in Artificial Intelligence (AI 2018)

Abstract

Text classification is a task of assigning a set of text documents into predefined classes based on the classifier that learns from training samples; labelled or unlabeled. Binary text classifiers provide a way to separate related documents from a large dataset. However, the existing binary text classifiers are not grounded in reality due to the issue of overfitting. They try to find a clear boundary between relevant and irrelevant objects rather than understand the decision boundary. Normally, the decision boundary cannot be described as a clear boundary because of the numerous uncertainties in text documents. This paper attempts to address this issue by proposing an effective model based on sliding window technique (SW) and Support Vector Machine (SVM) to deal with the uncertain boundary and to improve the effectiveness of binary text classification. This model aims to set the decision boundary by dividing the training documents into three distinct regions (positive, boundary, and negative regions) to ensure the certainty of extracted knowledge to describe relevant information. The model then organizes training samples for the learning task to build a multiple SVMs based classifier. The experimental results using the standard dataset Reuters Corpus Volume 1 (RCV1) and TREC topics for text classification, show that the proposed model significantly outperforms six state-of-the-art baseline models in binary text classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jindal, R., Malhotra, R., Jain, A.: Techniques for text classification: literature review and current trends. Webology 12(2), 1–28 (2015)

    Google Scholar 

  2. Joachims, T.: Transductive inference for text classification using support vector machines. In: ICML 1999, San Francisco, pp. 200–209. ACM (1999)

    Google Scholar 

  3. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: UAI 1995, Canada, pp. 338–345. ACM (1995)

    Google Scholar 

  4. Aggarwal, C.C., Zhai, C.: A survey of text classification algorithms. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 163–222. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-3223-4_6

    Chapter  Google Scholar 

  5. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  6. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002)

    Article  MathSciNet  Google Scholar 

  7. Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)

    MATH  Google Scholar 

  8. Zhang, L., Li, Y., Bijaksana, M. A.: Decreasing uncertainty for improvement of relevancy prediction. In: Proceeding of the Twelfth Australasian Data Mining Conference, AusDM 2014, Brisbane, pp. 157–162 (2014)

    Google Scholar 

  9. Li, Y., Zhang, L., Yue, X., Yiyu, Y., Raymond, L., Yutong, W.: Enhancing binary classification by modeling uncertain boundary in three-way decisions. IEEE Trans. Knowl. Data Eng. 29(7), 1438–1451 (2017)

    Article  Google Scholar 

  10. Wardaya, P.D.: Support vector machine as a binary classifier for automated object detection in remotely sensed data. In: IOP Conference Series: Earth and Environmental Science, vol. 18, no. 1. IOP Publishing (2014)

    Google Scholar 

  11. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683

    Chapter  Google Scholar 

  12. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)

    Article  Google Scholar 

  13. Shannon, M.: Forensic relative strength scoring: ASCII and entropy scoring. Int. J. Digit. Evid. 2(4), 1–19 (2004)

    Google Scholar 

  14. Lau, R.Y., Bruza, P.D., Song, D.: Towards a belief-revision-based adaptive and context-sensitive information retrieval system. ACM Trans. Inf. Syst. (TOIS) 26(2), 1–38 (2008)

    Article  Google Scholar 

  15. Bekkerman, R., Gavish, M.: High-precision phrase-based document classification on a modern scale. In: KDD 2011, San Diego, pp. 231–239. ACM (2011)

    Google Scholar 

  16. Li, Y., Algarni, A., Zhong, N.: Mining positive and negative patterns for relevance feature discovery. In: KDD 2010, pp. 753–762. ACM, New York (2010)

    Google Scholar 

  17. Fu, Z., Robles-Kelly, A., Zhou, J.: Mixing linear SVMs for nonlinear classification. IEEE Trans. Neural Netw. 21(12), 1963–1975 (2010)

    Article  Google Scholar 

  18. Rodriguez-Lujan, I., Cruz, C.S., Huerta, R.: Hierarchical linear support vector machine. Pattern Recogn. 45(12), 4414–4427 (2012)

    Article  Google Scholar 

  19. Gao, Y., Sun, S.: An empirical evaluation of linear and nonlinear kernels for text classification using support vector machines. In: FSKD 2010, Yantai, pp. 1502–1505. IEEE (2010)

    Google Scholar 

  20. Lan, M., Tan, C.L., Low, H.B.: Proposing a new term weighting scheme for text categorization. In: AAAI 2006, Boston, pp. 763–768. ACM (2006)

    Google Scholar 

  21. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University, Taipei (2003)

    Google Scholar 

  22. Du, L., Song, Q., Jia, X.: Detecting concept drift: an information entropy based method using an adaptive sliding window. Intell. Data Anal. 18(3), 337–364 (2014)

    Article  Google Scholar 

  23. Robertson, S., Zaragoza, H.: The Probabilistic Relevance Framework: BM25 and Beyond. Now Publishers Inc., Breda (2009)

    Google Scholar 

  24. Ko, Y.J., Seo, J.Y.: Issues and empirical results for improving text classification. J. Comput. Sci. Eng. 5(2), 150–160 (2011)

    Article  Google Scholar 

  25. Hall, G.A.: Sliding window measurement for file type identification. Technical report, ManTech Security and Mission Assurance (2006)

    Google Scholar 

  26. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)

    Google Scholar 

  27. Joachims, T.: A support vector method for multivariate performance measures. In: ICML 2005, Germany, pp. 377–384. ACM (2005)

    Google Scholar 

  28. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aisha Rashed Albqmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albqmi, A.R., Li, Y., Xu, Y. (2018). Enhancing Decision Boundary Setting for Binary Text Classification. In: Mitrovic, T., Xue, B., Li, X. (eds) AI 2018: Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer Science(), vol 11320. Springer, Cham. https://doi.org/10.1007/978-3-030-03991-2_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03991-2_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03990-5

  • Online ISBN: 978-3-030-03991-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics