Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Comparative Study of Defeasible Argumentation and Non-monotonic Fuzzy Reasoning for Elderly Survival Prediction Using Biomarkers

  • Conference paper
  • First Online:
AI*IA 2018 – Advances in Artificial Intelligence (AI*IA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11298))

  • 996 Accesses

Abstract

Computational argumentation has been gaining momentum as a solid theoretical research discipline for inference under uncertainty with incomplete and contradicting knowledge. However, its practical counterpart is underdeveloped, with a lack of studies focused on the investigation of its impact in real-world settings and with real knowledge. In this study, computational argumentation is compared against non-monotonic fuzzy reasoning and evaluated in the domain of biological markers for the prediction of mortality in an elderly population. Different non-monotonic argument-based models and fuzzy reasoning models have been designed using an extensive knowledge base gathered from an expert in the field. An analysis of the true positive and false positive rate of the inferences of such models has been performed. Findings indicate a superior inferential capacity of the designed argument-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://dx.doi.org/10.6084/m9.figshare.7028480.

  2. 2.

    https://doi.org/10.6084/m9.figshare.7028516.v1.

References

  1. Barron, E., Lara, J., White, M., Mathers, J.C.: Blood-borne biomarkers of mortality risk: systematic review of cohort studies. PloS One 10(6), e0127550 (2015)

    Article  Google Scholar 

  2. Bench-Capon, T.J., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10–15), 619–641 (2007)

    Article  MathSciNet  Google Scholar 

  3. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)

    Article  MathSciNet  Google Scholar 

  4. Castro, J.L., Trillas, E., Zurita, J.M.: Non-monotonic fuzzy reasoning. Fuzzy Sets Syst. 94(2), 217–225 (1998)

    Article  MathSciNet  Google Scholar 

  5. Chesñevar, C.I., Maguitman, A.G., Loui, R.P.: Logical models of argument. ACM Comput. Surv. (CSUR) 32(4), 337–383 (2000)

    Article  Google Scholar 

  6. De Ruijter, W., et al.: Use of framingham risk score and new biomarkers to predict cardiovascular mortality in older people: population based observational cohort study. BMJ 338, a3083 (2009)

    Article  Google Scholar 

  7. Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In: Smets, P. (ed.) Quantified Representation of Uncertainty and Imprecision, pp. 169–226. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-017-1735-9_6

    Chapter  MATH  Google Scholar 

  8. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and N-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  Google Scholar 

  9. Gegov, A., Gobalakrishnan, N., Sanders, D.: Rule base compression in fuzzy systems by filtration of non-monotonic rules. J. Intell. Fuzzy Syst. 27(4), 2029–2043 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Group, B.D.W., et al.: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69(3), 89–95 (2001)

    Article  Google Scholar 

  11. Lee, S., Lindquist, K., Segal, M., Covinsky, K.: Development and validation of a prognostic index for 4-year mortality in older adults. Jama 295(7), 801–808 (2006)

    Article  Google Scholar 

  12. Lloyd-Jones, D., Adams, R., Carnethon, M., et al.: Heart disease and stroke statistics 2009 update: a report from the American heart association statistics committee and stroke statistics subcommittee. Circulation 119(3), e21–e181 (2009)

    Google Scholar 

  13. Longo, L.: Argumentation for knowledge representation, conflict resolution, defeasible inference and its integration with machine learning. In: Holzinger, A. (ed.) Machine Learning for Health Informatics. LNCS (LNAI), vol. 9605, pp. 183–208. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50478-0_9

    Chapter  Google Scholar 

  14. Longo, L., Dondio, P.: Defeasible reasoning and argument-based systems in medical fields: an informal overview. In: 2014 IEEE 27th International Symposium on Computer-Based Medical Systems, pp. 376–381, New York (2014)

    Google Scholar 

  15. Longo, L., Hederman, L.: Argumentation theory for decision support in health-care: a comparison with machine learning. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds.) BHI 2013. LNCS (LNAI), vol. 8211, pp. 168–180. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02753-1_17

    Chapter  Google Scholar 

  16. Longo, L., Kane, B., Hederman, L.: Argumentation theory in health care. In: Proceedings of CBMS 2012, The 25th IEEE International Symposium on Computer-Based Medical Systems, Rome, Italy, 20–22 June 2012, pp. 1–6 (2012)

    Google Scholar 

  17. Matt, P.A., Morgem, M., Toni, F.: Combining statistics and arguments to compute trust. In: 9th International Conference on Autonomous Agents and Multiagent Systems, Toronto, Canada, vol. 1, pp. 209–216. ACM, May 2010

    Google Scholar 

  18. Prakken, H.: An abstract framework for argumentation with structured arguments. Argum. Comput. 1(2), 93–124 (2010)

    Article  Google Scholar 

  19. Rizzo, L., Longo, L.: Representing and inferring mental workload via defeasible reasoning: a comparison with the NASA task load index and the workload profile. In: 1st Workshop on Advances in Argumentation in Artificial Intelligence, pp. 126–140 (2017)

    Google Scholar 

  20. Rizzo, L., Majnaric, L., Dondio, P., Longo, L.: An investigation of argumentation theory for the prediction of survival in elderly using biomarkers. In: Iliadis, L., Maglogiannis, I., Plagianakos, V. (eds.) AIAI 2018. IAICT, vol. 519, pp. 385–397. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92007-8_33

    Chapter  Google Scholar 

  21. Siler, W., Buckley, J.J.: Fuzzy Expert Systems and Fuzzy Reasoning. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  22. Strimbu, K., Tavel, J.A.: What are biomarkers? Curr. Opin. HIV AIDS 5(6), 463 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Lucas Middeldorf Rizzo would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for his Science Without Borders scholarship, proc n. 232822/2014-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Rizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rizzo, L., Majnaric, L., Longo, L. (2018). A Comparative Study of Defeasible Argumentation and Non-monotonic Fuzzy Reasoning for Elderly Survival Prediction Using Biomarkers. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds) AI*IA 2018 – Advances in Artificial Intelligence. AI*IA 2018. Lecture Notes in Computer Science(), vol 11298. Springer, Cham. https://doi.org/10.1007/978-3-030-03840-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03840-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03839-7

  • Online ISBN: 978-3-030-03840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics