Abstract
Privacy leak of mobile applications has been a major issue in mobile security, and the prevalent usage of packing technology in mobile applications further complicates the problem and renders many existing analysis tools incapacitated. In this paper, we propose AppLance, a novel lightweight analysis system for Android packed applications without prior unpacking, which can also consider implicit information flow and privacy confusion. Without modifying Android system and the applications, AppLance runs on a mobile device as a dynamic analysis system, subtly evading the impact of various packing methods. Moreover, we build and release a benchmark, which contains 540 Android applications, to evaluate analysis tools aimed at packed applications. We evaluate AppLance on the benchmark and real-world applications, and the experimental results show that the system is effective and can be deployed on real devices with little overhead.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
As an important component in ART, dex2oat converts dex files into oat files.
- 2.
Instrument refers to obtaining the control flow and data flow information of the program by inserting the probe into the target program and executing the probe.
- 3.
To avoid potential interference from other applications, a single application is run each time in Android6.0 with AppLance.
References
Alazab, M., Moonsamy, V., Batten, L.M., Lantz, P., Tian, R.: Analysis of malicious and benign Android applications. In: 2012 32nd International Conference on Distributed Computing Systems Workshops, pp. 608–616 (2012)
ApkIDE. https://github.com/YunLambert/TravelFrog_Tool/tree/master/ApkIDE
Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps. In: PLDI (2014)
Backes, M., Bugiel, S., Schranz, O., von Styp-Rekowsky, P., Weisgerber, S.: Artist: the Android runtime instrumentation and security toolkit. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 481–495 (2017)
Baidu. https://app.baidu.com/
Duan, Y., et al.: Things you may not know about Android (un) packers : a systematic study based on whole-system emulation (2017)
Emmagee. https://github.com/NetEase/Emmagee
Enck, W., et al.: Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. 32, 5:1–5:29 (2010)
Frida. https://www.frida.re/
Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: automatically detecting potential privacy leaks in Android applications on a large scale. In: TRUST (2012)
Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C.: Information flow analysis of Android applications in DroidSafe. In: NDSS (2015)
Ijiami. http://www.ijiami.cn/
Jiang, Z., Zhou, A., Liu, L., Jia, P.L., Liu, L., Zuo, Z.: CrackDex: universal and automatic DEX extraction method. In: 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC), pp. 53–60 (2017)
Kaspersky. https://usa.kaspersky.com/
Kim, D., Kwak, J., Ryou, J.: DWroidDump: executable code extraction from Android applications for malware analysis. IJDSN 11, 379682:1–379682:9 (2015)
Legu. https://yaq.qq.com/
Li, J., Ye, Y., Zhou, Y., Ma, J.: CodeTracker: a lightweight approach to track and protect authorization codes in SMS messages. IEEE Access 6, 10107–10120 (2018)
Li, L., et al.: IccTA: detecting inter-component privacy leaks in Android apps. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1, pp. 280–291 (2015)
Li, L., Bissyandé, T.F., Octeau, D., Klein, J.: DroidRA: taming reflection to support whole-program analysis of Android apps. In: ISSTA (2016)
Li, Y., Yang, Z., Guo, Y., Chen, X.: DroidBot: a lightweight UI-guided test input generator for Android. In: 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C), pp. 23–26 (2017)
Ning, Z., Zhang, F.: DexLego: reassembleable bytecode extraction for aiding static analysis. In: 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 690–701 (2018)
NVISO. https://apkscan.nviso.be/
Qian, C., Luo, X., Shao, Y., Chan, A.T.S.: On tracking information flows through JNI in Android applications. In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 180–191 (2014)
Qihoo360. http://jiagu.360.cn/
Rastogi, V., Chen, Y., Enck, W.: AppsPlayground: automatic security analysis of smartphone applications. In: CODASPY (2013)
Rastogi, V., Qu, Z., McClurg, J., Cao, Y., Chen, Y.: Uranine: real-time privacy leakage monitoring without system modification for Android. In: SecureComm (2015)
Reaves, B., et al.: *droid: assessment and evaluation of Android application analysis tools. ACM Comput. Surv. 49, 55:1–55:30 (2016)
Schreckling, D., Posegga, J., Köstler, J., Schaff, M.: Kynoid: real-time enforcement of fine-grained, user-defined, and data-centric security policies for Android. In: WISTP (2012)
Schütte, J., Titze, D., Fuentes, J.M.D.: AppCaulk: data leak prevention by injecting targeted taint tracking into Android apps. In: 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 370–379 (2014)
Spreitzenbarth, M., Schreck, T., Echtler, F., Arp, D., Hoffmann, J.: Mobile-sandbox: combining static and dynamic analysis with machine-learning techniques. Int. J. Inf. Secur. 14, 141–153 (2014)
Sun, M., Wei, T., Lui, J.C.S.: TaintART: a practical multi-level information-flow tracking system for Android runtime. In: ACM Conference on Computer and Communications Security (2016)
Tam, K., Feizollah, A., Anuar, N.B., Salleh, R., Cavallaro, L.: The evolution of Android malware and Android analysis techniques. ACM Comput. Surv. 49, 76:1–76:41 (2017)
Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: automatic reconstruction of Android malware behaviors. In: NDSS (2015)
Vidas, T., Christin, N.: Evading Android runtime analysis via sandbox detection. In: AsiaCCS (2014)
Xu, R., Saïdi, H., Anderson, R.J.: Aurasium: practical policy enforcement for Android applications. In: Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA, 8–10 August 2012, pp. 539–552 (2012)
Xue, L., Luo, X., Yu, L., Wang, S., Wu, D.: Adaptive unpacking of Android apps. In: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), pp. 358–369 (2017)
Xue, L., Zhou, Y., Chen, T., Luo, X., Gu, G.: Malton: towards on-device non-invasive mobile malware analysis for art. In: USENIX Security Symposium (2017)
Yan, L.K., Yin, H.: DroidScope: seamlessly reconstructing the OS and Dalvik semantic views for dynamic Android malware analysis. In: USENIX Security Symposium (2012)
Yang, W., et al.: AppSpear: bytecode decrypting and DEX reassembling for packed Android malware. In: RAID (2015)
Yerima, S.Y., Sezer, S., Muttik, I.: High accuracy Android malware detection using ensemble learning. IET Inf. Secur. 9, 313–320 (2015)
You, W., Liang, B., Shi, W., Wang, P., Zhang, X.: TaintMan: an ART-compatible dynamic taint analysis framework on unmodified and non-rooted Android devices. IEEE Trans. Dependable Secur. Comput. (2017). https://doi.org/10.1109/TDSC.2017.2740169
Zhang, Y., Luo, X., Yin, H.: DexHunter: toward extracting hidden code from packed Android applications. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 293–311. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24177-7_15
Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution. In: 2012 IEEE Symposium on Security and Privacy, pp. 95–109 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Liang, H., Wang, Y., Yang, T., Yu, Y. (2018). AppLance: A Lightweight Approach to Detect Privacy Leak for Packed Applications. In: Gruschka, N. (eds) Secure IT Systems. NordSec 2018. Lecture Notes in Computer Science(), vol 11252. Springer, Cham. https://doi.org/10.1007/978-3-030-03638-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-03638-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03637-9
Online ISBN: 978-3-030-03638-6
eBook Packages: Computer ScienceComputer Science (R0)