Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Complex Features: Competitive Receptive Fields in Unsupervised Deep Networks

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2018 (IDEAL 2018)

Abstract

In this paper we propose a simple unsupervised approach to learning higher order features. This model is based on the recent success of lightweight approaches such as SOMNet and PCANet to the challenging task of image classification. Contrary to the more complex deep learning models such as convolutional neural networks (CNNs), these methods use naive algorithms to model the input distribution. Our endeavour focuses on the self-organizing map (SOM) based method and extends it by incorporating a competitive connection layer between filter learning stages. This simple addition encourages the second filter learning stage to learn complex combinations of first layer filters and simultaneously decreases channel depth. This approach to learning complex representations offers a competitive alternative to common deep learning models whilst maintaining an efficient framework. We test our proposed approach on the popular MNIST and challenging CIFAR-10 datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aly, S.: Learning invariant local image descriptor using convolutional mahalanobis self-organising map. Neurocomputing 142, 239–247 (2014)

    Article  Google Scholar 

  2. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1872–1886 (2013)

    Article  Google Scholar 

  3. Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  Google Scholar 

  4. Cireşan, D., Meier, U., Masci, J., Schmidhuber, J.: A committee of neural networks for traffic sign classification. In: International Joint Conference on Neural Networks (IJCNN), pp. 1918–1921. IEEE (2011)

    Google Scholar 

  5. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 215–223. JMLR (2011)

    Google Scholar 

  6. Coates, A., Ng, A.Y.: The importance of encoding versus training with sparse coding and vector quantization. In: International Conference on Machine Learning (ICML), pp. 921–928. ACM (2011)

    Google Scholar 

  7. Coates, A., Ng, A.Y.: Selecting receptive fields in deep networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 2528–2536. Curran Associates, Inc. (2011)

    Google Scholar 

  8. Cordel, M.O., Antioquia, A.M.C., Azcarraga, A.P.: Self-organizing maps as feature detectors for supervised neural network pattern recognition. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9950, pp. 618–625. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46681-1_73

    Chapter  Google Scholar 

  9. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, European Conference on Computer Vision (ECCV), pp. 1–22. Springer, Berlin (2004)

    Google Scholar 

  10. Culurciello, E., Jin, J., Dundar, A., Bates, J.: An analysis of the connections between layers of deep neural networks. arXiv preprint arXiv:1306.0152 (2013)

  11. Dong, L., He, L., Kong, G., Zhang, Q., Cao, X., Izquierdo, E.: CUNet: a compact unsupervised network for image classification. arXiv preprint arXiv:1607.01577 (2016)

  12. Dundar, A., Jin, J., Culurciello, E.: Convolutional clustering for unsupervised learning. arXiv preprint arXiv:1511.06241 (2015)

  13. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(Aug), 1871–1874 (2008)

    MATH  Google Scholar 

  14. Hankins, R., Peng, Y., Yin, H.: SOMNet: unsupervised feature learning networks for image classification. In: International Joint Conference on Neural Networks (IJCNN), pp. 1221–1228. IEEE (2018)

    Google Scholar 

  15. Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al.: What is the best multi-stage architecture for object recognition? In: International Conference on Computer Vision (ICCV), pp. 2146–2153. IEEE (2009)

    Google Scholar 

  16. Kannala, J., Rahtu, E.: BSIF: Binarized statistical image features. In: International Conference on Pattern Recognition (ICPR), pp. 1363–1366. IEEE (2012)

    Google Scholar 

  17. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  18. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  20. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2169–2178. IEEE (2006). https://doi.org/10.1109/CVPR.2006.68

  21. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems (NIPS), pp. 396–404. Morgan-Kaufmann (1990)

    Google Scholar 

  22. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  23. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: International Conference on Machine Learning (ICML), pp. 609–616. ACM (2009)

    Google Scholar 

  24. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  25. Lin, T.H., Kung, H.: Stable and efficient representation learning with nonnegativity constraints. In: International Conference on Machine Learning (ICML), pp. 1323–1331. JMLR (2014)

    Google Scholar 

  26. Ng, C.J., Teoh, A.B.J.: DCTNet: a simple learning-free approach for face recognition. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 761–768. IEEE (2015)

    Google Scholar 

  27. Ngiam, J., Chen, Z., Chia, D., Koh, P.W., Le, Q.V., Ng, A.Y.: Tiled convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1279–1287. Curran Associates, Inc. (2010)

    Google Scholar 

  28. Peng, Y., Yin, H.: Markov random field based convolutional neural networks for image classification. In: Yin, H., et al. (eds.) IDEAL 2017. LNCS, vol. 10585, pp. 387–396. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68935-7_42

    Chapter  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  30. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1794–1801. IEEE (2009)

    Google Scholar 

  31. Yin, H.: The self-organizing maps: background, theories, extensions and applications. In: Fulcher, J., Jain, L.C. (eds.) Computational Intelligence: A Compendium, vol. 115, pp. 715–762. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-78293-3_17

    Chapter  Google Scholar 

  32. Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Hankins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hankins, R., Peng, Y., Yin, H. (2018). Towards Complex Features: Competitive Receptive Fields in Unsupervised Deep Networks. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2018. IDEAL 2018. Lecture Notes in Computer Science(), vol 11314. Springer, Cham. https://doi.org/10.1007/978-3-030-03493-1_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03493-1_87

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03492-4

  • Online ISBN: 978-3-030-03493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics