Nothing Special   »   [go: up one dir, main page]

Skip to main content

D-ECG: A Dynamic Framework for Cardiac Arrhythmia Detection from IoT-Based ECGs

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2018 (WISE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11234))

Included in the following conference series:

Abstract

Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately \(12\%\) of all deaths globally. The current progress on arrhythmia detection based on ECG recordings is facing a bottleneck for adopting single classifier and static ensemble methods. Besides, most of the work tend to use a static feature set for characterizing all types of heartbeats, which may limit the classification performance. To fill in the gap, a novel framework called D-ECG is proposed to introduce dynamic ensemble selection (DES) technique to provide accurate detection of cardiac arrhythmia. In addition, the proposed D-ECG develops a result regulator that use different features to refine the classification result from the DES technique. The results reported in this paper have shown visible improvement on the overall heartbeat classification accuracy as well as the sensitivity of disease heartbeats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abawajy, J.H., Kelarev, A.V., Chowdhury, M.: Multistage approach for clustering and classification of ECG data. Comput. Methods Programs Biomed. 112(3), 720–730 (2013)

    Article  Google Scholar 

  2. Afkhami, R.G., Azarnia, G., Tinati, M.A.: Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recogn. Lett. 70, 45–51 (2016)

    Article  Google Scholar 

  3. Alejo, R., Sotoca, J.M., Valdovinos, R.M., Toribio, P.: Edited nearest neighbor rule for improving neural networks classifications. In: Zhang, L., Lu, B.-L., Kwok, J. (eds.) ISNN 2010. LNCS, vol. 6063, pp. 303–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13278-0_39

    Chapter  Google Scholar 

  4. Alonso-Atienza, F., Morgado, E., Fernandez-Martinez, L., García-Alberola, A., Rojo-Alvarez, J.L.: Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans. Biomed. Eng. 61(3), 832–840 (2014)

    Article  Google Scholar 

  5. ANSI/AAMI: Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. In: Association for the Advancement of Medical Instrumentation - AAMI ISO EC57 (1998–2008)

    Google Scholar 

  6. Britto Jr., A.S., Sabourin, R., Oliveira, L.E.: Dynamic selection of classifiersa comprehensive review. Pattern Recognit. 47(11), 3665–3680 (2014)

    Article  Google Scholar 

  7. Cavalin, P.R., Sabourin, R., Suen, C.Y.: Dynamic selection approaches for multiple classifier systems. Neural Comput. Appl. 22(3–4), 673–688 (2013)

    Article  Google Scholar 

  8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  9. Chen, S., Hua, W., Li, Z., Li, J., Gao, X.: Heartbeat classification using projected and dynamic features of ECG signal. Biomed. Signal Process. Control 31, 165–173 (2017)

    Article  Google Scholar 

  10. Cheng, P., Dong, X.: Life-threatening ventricular arrhythmia detection with personalized features. IEEE Access 5, 14195–14203 (2017)

    Article  Google Scholar 

  11. Cruz, R.M., Sabourin, R., Cavalcanti, G.D.: META-DES. Oracle: meta-learning and feature selection for dynamic ensemble selection. Inf. Fusion 38, 84–103 (2017)

    Article  Google Scholar 

  12. Cruz, R.M., Sabourin, R., Cavalcanti, G.D.: Dynamic classifier selection: recent advances and perspectives. Inf. Fusion 41, 195–216 (2018)

    Article  Google Scholar 

  13. Daamouche, A., Hamami, L., Alajlan, N., Melgani, F.: A wavelet optimization approach for ECG signal classification. Biomed. Signal Process. Control 7(4), 342–349 (2012)

    Article  Google Scholar 

  14. Daubechies, I.: Ten Lectures on Wavelets, vol. 61. Siam, Philadelphia (1992)

    Book  Google Scholar 

  15. De Albuquerque, V.C.H., et al.: Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Comput. Appl. 29(3), 679–693 (2018)

    Article  Google Scholar 

  16. De Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)

    Article  Google Scholar 

  17. De Lannoy, G., François, D., Delbeke, J., Verleysen, M.: Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans. Biomed. Eng. 59(1), 241–247 (2012)

    Article  Google Scholar 

  18. Doquire, G., De Lannoy, G., François, D., Verleysen, M.: Feature selection for interpatient supervised heart beat classification. Comput. Intell. Neurosci. 2011, 1 (2011)

    Article  Google Scholar 

  19. Dos Santos, E.M., Sabourin, R., Maupin, P.: A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognit. 41(10), 2993–3009 (2008)

    Article  Google Scholar 

  20. Güler, İ., Übeylı, E.D.: ECG beat classifier designed by combined neural network model. Pattern Recognit. 38(2), 199–208 (2005)

    Article  Google Scholar 

  21. Huang, H., Liu, J., Zhu, Q., Wang, R., Hu, G.: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals. Biomed. Eng. Online 13(1), 90 (2014)

    Article  Google Scholar 

  22. Kabir, M.E., Wang, H., Bertino, E.: A role-involved purpose-based access control model. Inf. Syst. Front. 14(3), 809–822 (2012)

    Article  Google Scholar 

  23. Karthika, J., Thomas, J.M., Kizhakkethottam, J.J.: Detection of life-threatening arrhythmias using temporal, spectral and wavelet features, pp. 1–4. IEEE (2015)

    Google Scholar 

  24. Ko, A.H., Sabourin, R., Britto Jr., A.S.: From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit. 41(5), 1718–1731 (2008)

    Article  Google Scholar 

  25. Li, M., Sun, X., Wang, H., Zhang, Y., Zhang, J.: Privacy-aware access control with trust management in web service. World Wide Web 14(4), 407–430 (2011)

    Article  Google Scholar 

  26. Lin, C., Chen, W., Qiu, C., Wu, Y., Krishnan, S., Zou, Q.: LibD3C: ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 123, 424–435 (2014)

    Article  Google Scholar 

  27. Llamedo, M., Martínez, J.P.: Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58(3), 616–625 (2011)

    Article  Google Scholar 

  28. Luz, E.J.S., Schwartz, W.R., Cámara-Chávez, G., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Programs Biomed. 127, 144–164 (2016)

    Article  Google Scholar 

  29. Martis, R.J., Acharya, U.R., Ray, A.K., Chakraborty, C.: Application of higher order cumulants to ECG signals for the cardiac health diagnosis. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 1697–1700. IEEE (2011)

    Google Scholar 

  30. Masoudnia, S., Ebrahimpour, R.: Mixture of experts: a literature survey. Artif. Intell. Rev. 42(2), 275–293 (2014)

    Article  Google Scholar 

  31. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  32. Özbay, Y., Tezel, G.: A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digit. Signal Process. 20(4), 1040–1049 (2010)

    Article  Google Scholar 

  33. Qin, Y., Sheng, Q.Z., Falkner, N.J., Dustdar, S., Wang, H., Vasilakos, A.V.: When things matter: a survey on data-centric internet of things. J. Netw. Comput. Appl. 64, 137–153 (2016)

    Article  Google Scholar 

  34. Sahoo, S., Kanungo, B., Behera, S., Sabut, S.: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 108, 55–66 (2017)

    Article  Google Scholar 

  35. Sharma, H., Sharma, K.: An algorithm for sleep apnea detection from single-lead ECG using hermite basis functions. Comput. Biol. Med. 77, 116–124 (2016)

    Article  Google Scholar 

  36. Sierra, B., Lazkano, E., Irigoien, I., Jauregi, E., Mendialdua, I.: K nearest neighbor equality: giving equal chance to all existing classes. Inf. Sci. 181(23), 5158–5168 (2011)

    Article  Google Scholar 

  37. Soares, R.G., Santana, A., Canuto, A.M., de Souto, M.C.P.: Using accuracy and diversity to select classifiers to build ensembles. In: International Joint Conference on Neural Networks, IJCNN 2006, pp. 1310–1316. IEEE (2006)

    Google Scholar 

  38. Sun, L., Wang, H., Yong, J., Wu, G.: Semantic access control for cloud computing based on e-healthcare. In: 2012 IEEE 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 512–518. IEEE (2012)

    Google Scholar 

  39. Sun, X., Li, M., Wang, H., Plank, A.: An efficient hash-based algorithm for minimal k-anonymity. In: Proceedings of the thirty-first Australasian conference on Computer science-Volume 74, pp. 101–107. Australian Computer Society, Inc. (2008)

    Google Scholar 

  40. Sun, X., Wang, H., Li, J., Zhang, Y.: Injecting purpose and trust into data anonymisation. Comput. Secur. 30(5), 332–345 (2011)

    Article  Google Scholar 

  41. Vimalachandran, P., Wang, H., Zhang, Y., Heyward, B., Zhao, Y.: Preserving patient-centred controls in electronic health record systems: a reliance-based model implication. In: 2017 International Conference on Orange Technologies (ICOT), pp. 37–44. IEEE (2017)

    Google Scholar 

  42. Vimalachandran, P., Wang, H., Zhang, Y., Zhuo, G., Kuang, H.: Cryptographic access control in electronic health record systems: a security implication. In: Bouguettaya, A., et al. (eds.) WISE 2017. LNCS, vol. 10570, pp. 540–549. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68786-5_43

    Chapter  Google Scholar 

  43. Wang, H., Cao, J., Zhang, Y.: A flexible payment scheme and its role-based access control. IEEE Trans. knowl. Data Eng. 17(3), 425–436 (2005)

    Article  Google Scholar 

  44. Wang, H., Zhang, Z., Taleb, T.: Special issue on security and privacy of IoT. World Wide Web 21(1), 1–6 (2018)

    Article  Google Scholar 

  45. Wang, Y., Li, H., Wang, H., Zhou, B., Zhang, Y.: Multi-window based ensemble learning for classification of imbalanced streaming data. In: Wang, J., et al. (eds.) WISE 2015. LNCS, vol. 9419, pp. 78–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26187-4_6

    Chapter  Google Scholar 

  46. Wikipedia contributors: Heart arrhythmia (2018). https://en.wikipedia.org/wiki/Heart_arrhythmia

  47. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 3, 408–421 (1972)

    Article  MathSciNet  Google Scholar 

  48. Woloszynski, T., Kurzynski, M.: A measure of competence based on randomized reference classifier for dynamic ensemble selection. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 4194–4197. IEEE (2010)

    Google Scholar 

  49. Woloszynski, T., Kurzynski, M.: A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recogn. 44(10–11), 2656–2668 (2011)

    Article  Google Scholar 

  50. Woloszynski, T., Kurzynski, M., Podsiadlo, P., Stachowiak, G.W.: A measure of competence based on random classification for dynamic ensemble selection. Inf. Fusion 13(3), 207–213 (2012)

    Article  Google Scholar 

  51. Xiao, J., Xie, L., He, C., Jiang, X.: Dynamic classifier ensemble model for customer classification with imbalanced class distribution. Expert Syst. Appl. 39(3), 3668–3675 (2012)

    Article  Google Scholar 

  52. Yang, Z., Zhou, Q., Lei, L., Zheng, K., Xiang, W.: An iot-cloud based wearable ECG monitoring system for smart healthcare. J. Med. Syst. 40(12), 286 (2016)

    Article  Google Scholar 

  53. Ye, C., Kumar, B.V., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012)

    Article  Google Scholar 

  54. Yu, S.N., Chen, Y.H.: Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recogn. Lett. 28(10), 1142–1150 (2007)

    Article  Google Scholar 

  55. Zhang, J., et al.: On efficient and robust anonymization for privacy protection on massive streaming categorical information. IEEE Trans. Dependable Secure Comput. 14(5), 507–520 (2017)

    Article  Google Scholar 

  56. Zhang, Z., Dong, J., Luo, X., Choi, K.S., Wu, X.: Heartbeat classification using disease-specific feature selection. Comput. Biol. Med. 46, 79–89 (2014)

    Article  Google Scholar 

  57. Zhu, X., Wu, X., Yang, Y.: Dynamic classifier selection for effective mining from noisy data streams. In: Fourth IEEE International Conference on Data Mining, ICDM 2004, pp. 305–312. IEEE (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Rong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J. (2018). D-ECG: A Dynamic Framework for Cardiac Arrhythmia Detection from IoT-Based ECGs. In: Hacid, H., Cellary, W., Wang, H., Paik, HY., Zhou, R. (eds) Web Information Systems Engineering – WISE 2018. WISE 2018. Lecture Notes in Computer Science(), vol 11234. Springer, Cham. https://doi.org/10.1007/978-3-030-02925-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02925-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02924-1

  • Online ISBN: 978-3-030-02925-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics