Abstract
Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately \(12\%\) of all deaths globally. The current progress on arrhythmia detection based on ECG recordings is facing a bottleneck for adopting single classifier and static ensemble methods. Besides, most of the work tend to use a static feature set for characterizing all types of heartbeats, which may limit the classification performance. To fill in the gap, a novel framework called D-ECG is proposed to introduce dynamic ensemble selection (DES) technique to provide accurate detection of cardiac arrhythmia. In addition, the proposed D-ECG develops a result regulator that use different features to refine the classification result from the DES technique. The results reported in this paper have shown visible improvement on the overall heartbeat classification accuracy as well as the sensitivity of disease heartbeats.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abawajy, J.H., Kelarev, A.V., Chowdhury, M.: Multistage approach for clustering and classification of ECG data. Comput. Methods Programs Biomed. 112(3), 720–730 (2013)
Afkhami, R.G., Azarnia, G., Tinati, M.A.: Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recogn. Lett. 70, 45–51 (2016)
Alejo, R., Sotoca, J.M., Valdovinos, R.M., Toribio, P.: Edited nearest neighbor rule for improving neural networks classifications. In: Zhang, L., Lu, B.-L., Kwok, J. (eds.) ISNN 2010. LNCS, vol. 6063, pp. 303–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13278-0_39
Alonso-Atienza, F., Morgado, E., Fernandez-Martinez, L., García-Alberola, A., Rojo-Alvarez, J.L.: Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans. Biomed. Eng. 61(3), 832–840 (2014)
ANSI/AAMI: Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. In: Association for the Advancement of Medical Instrumentation - AAMI ISO EC57 (1998–2008)
Britto Jr., A.S., Sabourin, R., Oliveira, L.E.: Dynamic selection of classifiersa comprehensive review. Pattern Recognit. 47(11), 3665–3680 (2014)
Cavalin, P.R., Sabourin, R., Suen, C.Y.: Dynamic selection approaches for multiple classifier systems. Neural Comput. Appl. 22(3–4), 673–688 (2013)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
Chen, S., Hua, W., Li, Z., Li, J., Gao, X.: Heartbeat classification using projected and dynamic features of ECG signal. Biomed. Signal Process. Control 31, 165–173 (2017)
Cheng, P., Dong, X.: Life-threatening ventricular arrhythmia detection with personalized features. IEEE Access 5, 14195–14203 (2017)
Cruz, R.M., Sabourin, R., Cavalcanti, G.D.: META-DES. Oracle: meta-learning and feature selection for dynamic ensemble selection. Inf. Fusion 38, 84–103 (2017)
Cruz, R.M., Sabourin, R., Cavalcanti, G.D.: Dynamic classifier selection: recent advances and perspectives. Inf. Fusion 41, 195–216 (2018)
Daamouche, A., Hamami, L., Alajlan, N., Melgani, F.: A wavelet optimization approach for ECG signal classification. Biomed. Signal Process. Control 7(4), 342–349 (2012)
Daubechies, I.: Ten Lectures on Wavelets, vol. 61. Siam, Philadelphia (1992)
De Albuquerque, V.C.H., et al.: Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Comput. Appl. 29(3), 679–693 (2018)
De Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)
De Lannoy, G., François, D., Delbeke, J., Verleysen, M.: Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans. Biomed. Eng. 59(1), 241–247 (2012)
Doquire, G., De Lannoy, G., François, D., Verleysen, M.: Feature selection for interpatient supervised heart beat classification. Comput. Intell. Neurosci. 2011, 1 (2011)
Dos Santos, E.M., Sabourin, R., Maupin, P.: A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognit. 41(10), 2993–3009 (2008)
Güler, İ., Übeylı, E.D.: ECG beat classifier designed by combined neural network model. Pattern Recognit. 38(2), 199–208 (2005)
Huang, H., Liu, J., Zhu, Q., Wang, R., Hu, G.: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals. Biomed. Eng. Online 13(1), 90 (2014)
Kabir, M.E., Wang, H., Bertino, E.: A role-involved purpose-based access control model. Inf. Syst. Front. 14(3), 809–822 (2012)
Karthika, J., Thomas, J.M., Kizhakkethottam, J.J.: Detection of life-threatening arrhythmias using temporal, spectral and wavelet features, pp. 1–4. IEEE (2015)
Ko, A.H., Sabourin, R., Britto Jr., A.S.: From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit. 41(5), 1718–1731 (2008)
Li, M., Sun, X., Wang, H., Zhang, Y., Zhang, J.: Privacy-aware access control with trust management in web service. World Wide Web 14(4), 407–430 (2011)
Lin, C., Chen, W., Qiu, C., Wu, Y., Krishnan, S., Zou, Q.: LibD3C: ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 123, 424–435 (2014)
Llamedo, M., Martínez, J.P.: Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58(3), 616–625 (2011)
Luz, E.J.S., Schwartz, W.R., Cámara-Chávez, G., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Programs Biomed. 127, 144–164 (2016)
Martis, R.J., Acharya, U.R., Ray, A.K., Chakraborty, C.: Application of higher order cumulants to ECG signals for the cardiac health diagnosis. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 1697–1700. IEEE (2011)
Masoudnia, S., Ebrahimpour, R.: Mixture of experts: a literature survey. Artif. Intell. Rev. 42(2), 275–293 (2014)
Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)
Özbay, Y., Tezel, G.: A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digit. Signal Process. 20(4), 1040–1049 (2010)
Qin, Y., Sheng, Q.Z., Falkner, N.J., Dustdar, S., Wang, H., Vasilakos, A.V.: When things matter: a survey on data-centric internet of things. J. Netw. Comput. Appl. 64, 137–153 (2016)
Sahoo, S., Kanungo, B., Behera, S., Sabut, S.: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 108, 55–66 (2017)
Sharma, H., Sharma, K.: An algorithm for sleep apnea detection from single-lead ECG using hermite basis functions. Comput. Biol. Med. 77, 116–124 (2016)
Sierra, B., Lazkano, E., Irigoien, I., Jauregi, E., Mendialdua, I.: K nearest neighbor equality: giving equal chance to all existing classes. Inf. Sci. 181(23), 5158–5168 (2011)
Soares, R.G., Santana, A., Canuto, A.M., de Souto, M.C.P.: Using accuracy and diversity to select classifiers to build ensembles. In: International Joint Conference on Neural Networks, IJCNN 2006, pp. 1310–1316. IEEE (2006)
Sun, L., Wang, H., Yong, J., Wu, G.: Semantic access control for cloud computing based on e-healthcare. In: 2012 IEEE 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 512–518. IEEE (2012)
Sun, X., Li, M., Wang, H., Plank, A.: An efficient hash-based algorithm for minimal k-anonymity. In: Proceedings of the thirty-first Australasian conference on Computer science-Volume 74, pp. 101–107. Australian Computer Society, Inc. (2008)
Sun, X., Wang, H., Li, J., Zhang, Y.: Injecting purpose and trust into data anonymisation. Comput. Secur. 30(5), 332–345 (2011)
Vimalachandran, P., Wang, H., Zhang, Y., Heyward, B., Zhao, Y.: Preserving patient-centred controls in electronic health record systems: a reliance-based model implication. In: 2017 International Conference on Orange Technologies (ICOT), pp. 37–44. IEEE (2017)
Vimalachandran, P., Wang, H., Zhang, Y., Zhuo, G., Kuang, H.: Cryptographic access control in electronic health record systems: a security implication. In: Bouguettaya, A., et al. (eds.) WISE 2017. LNCS, vol. 10570, pp. 540–549. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68786-5_43
Wang, H., Cao, J., Zhang, Y.: A flexible payment scheme and its role-based access control. IEEE Trans. knowl. Data Eng. 17(3), 425–436 (2005)
Wang, H., Zhang, Z., Taleb, T.: Special issue on security and privacy of IoT. World Wide Web 21(1), 1–6 (2018)
Wang, Y., Li, H., Wang, H., Zhou, B., Zhang, Y.: Multi-window based ensemble learning for classification of imbalanced streaming data. In: Wang, J., et al. (eds.) WISE 2015. LNCS, vol. 9419, pp. 78–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26187-4_6
Wikipedia contributors: Heart arrhythmia (2018). https://en.wikipedia.org/wiki/Heart_arrhythmia
Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 3, 408–421 (1972)
Woloszynski, T., Kurzynski, M.: A measure of competence based on randomized reference classifier for dynamic ensemble selection. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 4194–4197. IEEE (2010)
Woloszynski, T., Kurzynski, M.: A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recogn. 44(10–11), 2656–2668 (2011)
Woloszynski, T., Kurzynski, M., Podsiadlo, P., Stachowiak, G.W.: A measure of competence based on random classification for dynamic ensemble selection. Inf. Fusion 13(3), 207–213 (2012)
Xiao, J., Xie, L., He, C., Jiang, X.: Dynamic classifier ensemble model for customer classification with imbalanced class distribution. Expert Syst. Appl. 39(3), 3668–3675 (2012)
Yang, Z., Zhou, Q., Lei, L., Zheng, K., Xiang, W.: An iot-cloud based wearable ECG monitoring system for smart healthcare. J. Med. Syst. 40(12), 286 (2016)
Ye, C., Kumar, B.V., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012)
Yu, S.N., Chen, Y.H.: Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recogn. Lett. 28(10), 1142–1150 (2007)
Zhang, J., et al.: On efficient and robust anonymization for privacy protection on massive streaming categorical information. IEEE Trans. Dependable Secure Comput. 14(5), 507–520 (2017)
Zhang, Z., Dong, J., Luo, X., Choi, K.S., Wu, X.: Heartbeat classification using disease-specific feature selection. Comput. Biol. Med. 46, 79–89 (2014)
Zhu, X., Wu, X., Yang, Y.: Dynamic classifier selection for effective mining from noisy data streams. In: Fourth IEEE International Conference on Data Mining, ICDM 2004, pp. 305–312. IEEE (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J. (2018). D-ECG: A Dynamic Framework for Cardiac Arrhythmia Detection from IoT-Based ECGs. In: Hacid, H., Cellary, W., Wang, H., Paik, HY., Zhou, R. (eds) Web Information Systems Engineering – WISE 2018. WISE 2018. Lecture Notes in Computer Science(), vol 11234. Springer, Cham. https://doi.org/10.1007/978-3-030-02925-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-02925-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02924-1
Online ISBN: 978-3-030-02925-8
eBook Packages: Computer ScienceComputer Science (R0)