Nothing Special   »   [go: up one dir, main page]

Skip to main content

Density Biased Sampling with Locality Sensitive Hashing for Outlier Detection

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2018 (WISE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11234))

Included in the following conference series:

Abstract

Outlier or anomaly detection is one of the major challenges in big data analytics since unusual but insightful patterns are often hidden in massive data sets such as sensing data and social networks. Sampling techniques have been a focus for outlier detection to address scalability on big data. The recent study has shown uniform random sampling with ensemble can boost outlier detection performance. However, uniform sampling assumes that all points are of equal importance, which usually fails to hold for outlier detection because some points are more sensitive to sampling than others. Thus, it is necessary and promising to utilise the density information of points to reflect their importance for sampling based detection. In this paper, we formally investigate density biased sampling for outlier detection, and propose a novel density biased sampling approach. To attain scalable density estimation, we use Locality Sensitive Hashing (LSH) for counting the nearest neighbours of a point. Extensive experiments on both synthetic and real-world data sets show that our approach significantly outperforms existing outlier detection methods based on uniform sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/datasets.html.

References

  1. Aggarwal, C.C.: Outlier ensembles: position paper. ACM SIGKDD Explor. Newsl. 14(2), 49–58 (2013)

    Article  Google Scholar 

  2. Aggarwal, C.C., Sathe, S.: Theoretical foundations and algorithms for outlier ensembles. ACM SIGKDD Explor. Newsl. 17(1), 24–47 (2015)

    Article  Google Scholar 

  3. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: FOCS, pp. 459–468 (2006)

    Google Scholar 

  4. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15–27. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_2

    Chapter  Google Scholar 

  5. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. ACM SIGMOD Rec 29(2), 93–104 (2000)

    Article  Google Scholar 

  6. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  7. Dong, W., Wang, Z., Josephson, W., Charikar, M., Li, K.: Modeling LSH for performance tuning. In: CIKM, pp. 669–678 (2008)

    Google Scholar 

  8. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  9. Fu, P., Hu, X.: Biased-sampling of density-based local outlier detection algorithm. In: ICNC-FSKD, pp. 1246–1253 (2016)

    Google Scholar 

  10. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: STOC, pp. 604–613 (1998)

    Google Scholar 

  11. Jones, M.: Kumaraswamy’s distribution: a beta-type distribution with some tractability advantages. Stat. Methodol. 6(1), 70–81 (2009)

    Article  MathSciNet  Google Scholar 

  12. Knox, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large datasets. In: VLDB, pp. 392–403 (1998)

    Google Scholar 

  13. Kollios, G., Gunopulos, D., Koudas, N., Berchtold, S.: Efficient biased sampling for approximate clustering and outlier detection in large data sets. IEEE Trans. Knowl. Data Eng. 15(5), 1170–1187 (2003)

    Article  Google Scholar 

  14. Kriegel, H.P., Zimek, A., et al.: Angle-based outlier detection in high-dimensional data. In: ACM SIGKDD, pp. 444–452 (2008)

    Google Scholar 

  15. Liu, F.T., Ting, K.M., Zhou, Z.-H.: On detecting clustered anomalies using SCiForest. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6322, pp. 274–290. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15883-4_18

    Chapter  Google Scholar 

  16. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data 6(1), 3 (2012)

    Article  Google Scholar 

  17. Luo, C., Shrivastava, A.: Arrays of (locality-sensitive) count estimators (ACE): anomaly detection on the edge. In: WWW, pp. 1439–1448 (2018)

    Google Scholar 

  18. Nanopoulos, A., Manolopoulos, Y., Theodoridis, Y.: An efficient and effective algorithm for density biased sampling. In: CIKM, pp. 398–404 (2002)

    Google Scholar 

  19. Pang, G., Cao, L., Chen, L., Lian, D., Liu, H.: Sparse modeling-based sequential ensemble learning for effective outlier detection in high-dimensional numeric data. In: AAAI (2018)

    Google Scholar 

  20. Pillutla, M.R., Raval, N., Bansal, P., Srinathan, K., Jawahar, C.: LSH based outlier detection and its application in distributed setting. In: CIKM, pp. 2289–2292 (2011)

    Google Scholar 

  21. Rayana, S., Zhong, W., Akoglu, L.: Sequential ensemble learning for outlier detection: a bias-variance perspective. In: ICDM, pp. 1167–1172 (2016)

    Google Scholar 

  22. Schubert, E.: Generalized and efficient outlier detection for spatial, temporal, and high-dimensional data mining. Ph.D. thesis (2013)

    Google Scholar 

  23. Sugiyama, M., Borgwardt, K.: Rapid distance-based outlier detection via sampling. In: NIPS, pp. 467–475 (2013)

    Google Scholar 

  24. Wang, Y., Parthasarathy, S., Tatikonda, S.: Locality sensitive outlier detection: a ranking driven approach. In: ICDE, pp. 410–421 (2011)

    Google Scholar 

  25. Wu, M., Jermaine, C.: Outlier detection by sampling with accuracy guarantees. In: ACM SIGKDD, pp. 767–772 (2006)

    Google Scholar 

  26. Yang, X., Latecki, L.J., Pokrajac, D.: Outlier detection with globally optimal exemplar-based GMM. In: SDM, pp. 145–154 (2009)

    Chapter  Google Scholar 

  27. Zhang, X., et al.: LSHiForest: a generic framework for fast tree isolation based ensemble anomaly analysis. In: ICDE, pp. 983–994 (2017)

    Google Scholar 

  28. Zimek, A., Campello, R.J., Sander, J.: Ensembles for unsupervised outlier detection: challenges and research questions a position paper. ACM SIGKDD Explor. Newsl. 15(1), 11–22 (2014)

    Article  Google Scholar 

  29. Zimek, A., Gaudet, M., Campello, R.J., Sander, J.: Subsampling for efficient and effective unsupervised outlier detection ensembles. In: ACM SIGKDD, pp. 428–436 (2013)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the New Zealand Marsden Fund under Grant No. 17-UOA-248, the UoA FRDF under Grant No. 3714668, and the NJU Overseas Open fund under Grant No. KFKT2018A12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X. et al. (2018). Density Biased Sampling with Locality Sensitive Hashing for Outlier Detection. In: Hacid, H., Cellary, W., Wang, H., Paik, HY., Zhou, R. (eds) Web Information Systems Engineering – WISE 2018. WISE 2018. Lecture Notes in Computer Science(), vol 11234. Springer, Cham. https://doi.org/10.1007/978-3-030-02925-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02925-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02924-1

  • Online ISBN: 978-3-030-02925-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics