Abstract
We study the almost-sure termination problem for probabilistic programs. First, we show that supermartingales with lower bounds on conditional absolute difference provide a sound approach for the almost-sure termination problem. Moreover, using this approach we can obtain explicit optimal bounds on tail probabilities of non-termination within a given number of steps. Second, we present a new approach based on Central Limit Theorem for the almost-sure termination problem, and show that this approach can establish almost-sure termination of programs which none of the existing approaches can handle. Finally, we discuss algorithmic approaches for the two above methods that lead to automated analysis techniques for almost-sure termination of probabilistic programs.
A full version is available in http://arxiv.org/abs/1806.06683.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs. PACMPL 2(POPL), 34:1–34:32 (2018). https://doi.org/10.1145/3158122
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_24
Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_48
Brázdil, T., Kiefer, S., Kucera, A., Vareková, I.H.: Runtime analysis of probabilistic programs with unbounded recursion. J. Comput. Syst. Sci. 81(1), 288–310 (2015)
Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martingales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_34
Chatterjee, K., Fu, H.: Termination of nondeterministic recursive probabilistic programs. CoRR abs/1701.02944, January 2017
Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic programs through positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_1
Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of qualitative and quantitative termination problems for affine probabilistic programs. In: POPL, pp. 327–342 (2016)
Chatterjee, K., Novotný, P., Žikelić, Đ.: Stochastic invariants for probabilistic termination. In: POPL, pp. 145–160 (2017)
Colóon, M.A., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_6
Esparza, J., Gaiser, A., Kiefer, S.: Proving termination of probabilistic programs using patterns. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 123–138. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_14
Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: soundness, completeness, and compositionality. In: POPL, pp. 489–501 (2015)
Floyd, R.W.: Assigning meanings to programs. Math. Aspects Comput. Sci. 19, 19–33 (1967)
Foster, F.G.: On the stochastic matrices associated with certain queuing processes. Ann. Math. Stat. 24(3), 355–360 (1953)
Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In: Herbsleb, J.D., Dwyer, M.B. (eds.) FOSE, pp. 167–181. ACM (2014)
Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1), 99–134 (1998)
Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. JAIR 4, 237–285 (1996)
Kaminski, B.L., Katoen, J.-P.: On the hardness of almost–sure termination. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 307–318. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48057-1_24
Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition reasoning for expected run–times of probabilistic programs. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1_15
Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. D. Van Nostrand Company, Princeton (1966)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
McIver, A., Morgan, C.: Developing and reasoning about probabilistic programs in pGCL. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004. LNCS, vol. 3167, pp. 123–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11889229_4
McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Monographs in Computer Science. Springer, New York (2005). https://doi.org/10.1007/b138392
McIver, A., Morgan, C.: A new rule for almost-certain termination of probabilistic and demonic programs. CoRR abs/1612.01091, December 2016
McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.: A new proof rule for almost-sure termination. PACMPL 2(POPL), 33:1–33:28 (2018). https://doi.org/10.1145/3158121
van de Meent, J., Yang, H., Mansinghka, V., Wood, F.: Particle gibbs with ancestor sampling for probabilistic programs. In: AISTATS (2015)
Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource analysis for probabilistic programs. In: Foster, J.S., Grossman, D. (eds.) Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, 18–22 June 2018, pp. 496–512. ACM (2018). https://doi.org/10.1145/3192366.3192394
Olmedo, F., Kaminski, B.L., Katoen, J.P., Matheja, C.: Reasoning about recursive probabilistic programs. In: LICS, pp. 672–681 (2016)
Paz, A.: Introduction to Probabilistic Automata (Computer Science and Applied Mathematics). Academic Press, Cambridge (1971)
Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_20
Rabin, M.: Probabilistic automata. Inf. Control 6, 230–245 (1963)
Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs: inferring whole program properties from finitely many paths. In: PLDI, pp. 447–458 (2013)
Sohn, K., Gelder, A.V.: Termination detection in logic programs using argument sizes. In: PODS, pp. 216–226 (1991)
Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)
Acknowledgements
This work was financially supported by NSFC (Grant No. 61772336, 61472239), Notional Key Research and Development Program of China (Grant No. 2017YFB0701900), Austrian Science Fund (FWF) grant S11407-N23 (RiSE/SHiNE) and Vienna Science and Technology Fund (WWTF) project ICT15-003.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, M., Fu, H., Chatterjee, K. (2018). New Approaches for Almost-Sure Termination of Probabilistic Programs. In: Ryu, S. (eds) Programming Languages and Systems. APLAS 2018. Lecture Notes in Computer Science(), vol 11275. Springer, Cham. https://doi.org/10.1007/978-3-030-02768-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-02768-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02767-4
Online ISBN: 978-3-030-02768-1
eBook Packages: Computer ScienceComputer Science (R0)