Nothing Special   »   [go: up one dir, main page]

Skip to main content

LID-Fingerprint: A Local Intrinsic Dimensionality-Based Fingerprinting Method

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11223))

Included in the following conference series:

Abstract

One of the most important information hiding techniques is fingerprinting, which aims to generate new representations for data that are significantly more compact than the original. Fingerprinting is a promising technique for secure and efficient similarity search for multimedia data on the cloud. In this paper, we propose LID-Fingerprint, a simple binary fingerprinting technique for high-dimensional data. The binary fingerprints are derived from sparse representations of the data objects, which are generated using a feature selection criterion, Support-Weighted Intrinsic Dimensionality (support-weighted ID), within a similarity graph construction method, NNWID-Descent. The sparsification process employed by LID-Fingerprint significantly reduces the information content of the data, thus ensuring data suppression and data masking. Experimental results show that LID-Fingerprint is able to generate compact binary fingerprints while allowing a reasonable level of search accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amsaleg, L., Chelly, O., Furon, T., Girard, S., Houle, M.E., Kawarabayashi, K., Nett, M.: Estimating local intrinsic dimensionality. In: ACM SIGKDD, pp. 29–38 (2015)

    Google Scholar 

  2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: FOCS, pp. 459–468. IEEE (2006)

    Google Scholar 

  3. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998)

    Article  MathSciNet  Google Scholar 

  4. Broder, A.Z.: On the resemblance and containment of documents. In: SEQUENCES, pp. 21–29. IEEE (1997)

    Google Scholar 

  5. Caballero, J., Venkataraman, S., Poosankam, P., Kang, M.G., Song, D., Blum, A.: FiG: automatic fingerprint generation. In: NDSS Symposium (2007)

    Google Scholar 

  6. Cano, P., Batlle, E., Kalker, T., Haitsma, J.: A review of audio fingerprinting. J. VLSI Sig. Process. Syst. 41(3), 271–284 (2005)

    Article  Google Scholar 

  7. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: ACM STOC, pp. 380–388 (2002)

    Google Scholar 

  8. Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2008)

    Google Scholar 

  9. Dong, W., Moses, C., Li, K.: Efficient K-nearest neighbor graph construction for generic similarity measures. In: WWW, pp. 577–586 (2011)

    Google Scholar 

  10. Farooq, F., Bolle, R.M., Jea, T.Y., Ratha, N.: Anonymous and revocable fingerprint recognition. In: IEEE CVPR, pp. 1–7 (2007)

    Google Scholar 

  11. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE CVPR, vol. 2, pp. 524–531, June 2005

    Google Scholar 

  12. Fernandes, K., Vinagre, P., Cortez, P.: A proactive intelligent decision support system for predicting the popularity of online news. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS (LNAI), vol. 9273, pp. 535–546. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23485-4_53

    Chapter  Google Scholar 

  13. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. IJCV 61(1), 103–112 (2005)

    Article  Google Scholar 

  14. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. VLDB 99, 518–529 (1999)

    Google Scholar 

  15. Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: IEEE CVPR, pp. 817–824 (2011)

    Google Scholar 

  16. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. J. Comput. Secur. 13(3), 483–514 (2005)

    Article  Google Scholar 

  17. Houle, M.E.: Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 2017. LNCS, vol. 10609, pp. 64–79. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68474-1_5

    Chapter  Google Scholar 

  18. Houle, M.E., Oria, V., Wali, A.M.: Improving \(k\)-NN graph accuracy using local intrinsic dimensionality. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 2017. LNCS, vol. 10609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68474-1_8

    Chapter  Google Scholar 

  19. Houle, M.E.: Dimensionality, discriminability, density and distance distributions. In: IEEE ICDMW, pp. 468–473 (2013)

    Google Scholar 

  20. Houle, M.E.: Local intrinsic dimensionality II: multivariate analysis and distributional support. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 201. LNCS, vol. 10609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68474-1_6

    Chapter  Google Scholar 

  21. Houle, M.E., Ma, X., Oria, V., Sun, J.: Improving the quality of K-NN graphs through vector sparsification: application to image databases. IJMIR 3(4), 259–274 (2014)

    Google Scholar 

  22. Ji, J., Li, J., Yan, S., Zhang, B., Tian, Q.: Super-bit locality-sensitive hashing. In: NIPS, pp. 108–116 (2012)

    Google Scholar 

  23. Katzenbeisser, S., Petitcolas, F.: Information Hiding. Artech House (2016)

    Google Scholar 

  24. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–615 (1973)

    Article  Google Scholar 

  25. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  26. Lichman, M.: UCI Machine Learning Repository (2013). http://archive.ics.uci.edu/ml

  27. Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradient descent. In: NIPS, pp. 512–518 (2000)

    Google Scholar 

  28. Moravec, K., Cox, I.J.: A comparison of extended fingerprint hashing and locality sensitive hashing for binary audio fingerprints. In: ACM ICMR, p. 31 (2011)

    Google Scholar 

  29. Petitcolas, F.A., Anderson, R.J., Kuhn, M.G.: Information hiding-a survey. Proc. IEEE 87(7), 1062–1078 (1999)

    Article  Google Scholar 

  30. Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels. In: NIPS, pp. 1509–1517 (2009)

    Google Scholar 

  31. Salakhutdinov, R., Hinton, G.: Semantic hashing. RBM 500(3), 500 (2007)

    Google Scholar 

  32. Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: IEEE ICCV, p. 750 (2003)

    Google Scholar 

  33. Strecha, C., Bronstein, A., Bronstein, M., Fua, P.: LDAhash: improved matching with smaller descriptors. TPAMI 34(1), 66–78 (2012)

    Article  Google Scholar 

  34. Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition (2008)

    Google Scholar 

  35. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS, pp. 1753–1760 (2009)

    Google Scholar 

  36. Xu, H., Veldhuis, R.N.: Binary representations of fingerprint spectral minutiae features. In: IEEE ICPR, pp. 1212–1216 (2010)

    Google Scholar 

  37. Xu, H., Veldhuis, R.N., Kevenaar, T.A., Akkermans, T.A.: A fast minutiae-based fingerprint recognition system. IEEE Syst. J. 3(4), 418–427 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

M. E. Houle acknowledges the financial support of JSPS Kakenhi Kiban (B) Research Grant 18H03296, and V. Oria acknowledges the financial support of NSF Research Grants DGE 1565478 and AGS 1743321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arwa M. Wali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Houle, M.E., Oria, V., Rohloff, K.R., Wali, A.M. (2018). LID-Fingerprint: A Local Intrinsic Dimensionality-Based Fingerprinting Method. In: Marchand-Maillet, S., Silva, Y., Chávez, E. (eds) Similarity Search and Applications. SISAP 2018. Lecture Notes in Computer Science(), vol 11223. Springer, Cham. https://doi.org/10.1007/978-3-030-02224-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02224-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02223-5

  • Online ISBN: 978-3-030-02224-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics