Abstract
One of the most important information hiding techniques is fingerprinting, which aims to generate new representations for data that are significantly more compact than the original. Fingerprinting is a promising technique for secure and efficient similarity search for multimedia data on the cloud. In this paper, we propose LID-Fingerprint, a simple binary fingerprinting technique for high-dimensional data. The binary fingerprints are derived from sparse representations of the data objects, which are generated using a feature selection criterion, Support-Weighted Intrinsic Dimensionality (support-weighted ID), within a similarity graph construction method, NNWID-Descent. The sparsification process employed by LID-Fingerprint significantly reduces the information content of the data, thus ensuring data suppression and data masking. Experimental results show that LID-Fingerprint is able to generate compact binary fingerprints while allowing a reasonable level of search accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amsaleg, L., Chelly, O., Furon, T., Girard, S., Houle, M.E., Kawarabayashi, K., Nett, M.: Estimating local intrinsic dimensionality. In: ACM SIGKDD, pp. 29–38 (2015)
Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: FOCS, pp. 459–468. IEEE (2006)
Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998)
Broder, A.Z.: On the resemblance and containment of documents. In: SEQUENCES, pp. 21–29. IEEE (1997)
Caballero, J., Venkataraman, S., Poosankam, P., Kang, M.G., Song, D., Blum, A.: FiG: automatic fingerprint generation. In: NDSS Symposium (2007)
Cano, P., Batlle, E., Kalker, T., Haitsma, J.: A review of audio fingerprinting. J. VLSI Sig. Process. Syst. 41(3), 271–284 (2005)
Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: ACM STOC, pp. 380–388 (2002)
Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2008)
Dong, W., Moses, C., Li, K.: Efficient K-nearest neighbor graph construction for generic similarity measures. In: WWW, pp. 577–586 (2011)
Farooq, F., Bolle, R.M., Jea, T.Y., Ratha, N.: Anonymous and revocable fingerprint recognition. In: IEEE CVPR, pp. 1–7 (2007)
Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE CVPR, vol. 2, pp. 524–531, June 2005
Fernandes, K., Vinagre, P., Cortez, P.: A proactive intelligent decision support system for predicting the popularity of online news. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS (LNAI), vol. 9273, pp. 535–546. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23485-4_53
Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. IJCV 61(1), 103–112 (2005)
Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. VLDB 99, 518–529 (1999)
Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: IEEE CVPR, pp. 817–824 (2011)
Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. J. Comput. Secur. 13(3), 483–514 (2005)
Houle, M.E.: Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 2017. LNCS, vol. 10609, pp. 64–79. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68474-1_5
Houle, M.E., Oria, V., Wali, A.M.: Improving \(k\)-NN graph accuracy using local intrinsic dimensionality. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 2017. LNCS, vol. 10609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68474-1_8
Houle, M.E.: Dimensionality, discriminability, density and distance distributions. In: IEEE ICDMW, pp. 468–473 (2013)
Houle, M.E.: Local intrinsic dimensionality II: multivariate analysis and distributional support. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 201. LNCS, vol. 10609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68474-1_6
Houle, M.E., Ma, X., Oria, V., Sun, J.: Improving the quality of K-NN graphs through vector sparsification: application to image databases. IJMIR 3(4), 259–274 (2014)
Ji, J., Li, J., Yan, S., Zhang, B., Tian, Q.: Super-bit locality-sensitive hashing. In: NIPS, pp. 108–116 (2012)
Katzenbeisser, S., Petitcolas, F.: Information Hiding. Artech House (2016)
Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–615 (1973)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Lichman, M.: UCI Machine Learning Repository (2013). http://archive.ics.uci.edu/ml
Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradient descent. In: NIPS, pp. 512–518 (2000)
Moravec, K., Cox, I.J.: A comparison of extended fingerprint hashing and locality sensitive hashing for binary audio fingerprints. In: ACM ICMR, p. 31 (2011)
Petitcolas, F.A., Anderson, R.J., Kuhn, M.G.: Information hiding-a survey. Proc. IEEE 87(7), 1062–1078 (1999)
Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels. In: NIPS, pp. 1509–1517 (2009)
Salakhutdinov, R., Hinton, G.: Semantic hashing. RBM 500(3), 500 (2007)
Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: IEEE ICCV, p. 750 (2003)
Strecha, C., Bronstein, A., Bronstein, M., Fua, P.: LDAhash: improved matching with smaller descriptors. TPAMI 34(1), 66–78 (2012)
Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition (2008)
Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS, pp. 1753–1760 (2009)
Xu, H., Veldhuis, R.N.: Binary representations of fingerprint spectral minutiae features. In: IEEE ICPR, pp. 1212–1216 (2010)
Xu, H., Veldhuis, R.N., Kevenaar, T.A., Akkermans, T.A.: A fast minutiae-based fingerprint recognition system. IEEE Syst. J. 3(4), 418–427 (2009)
Acknowledgments
M. E. Houle acknowledges the financial support of JSPS Kakenhi Kiban (B) Research Grant 18H03296, and V. Oria acknowledges the financial support of NSF Research Grants DGE 1565478 and AGS 1743321.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Houle, M.E., Oria, V., Rohloff, K.R., Wali, A.M. (2018). LID-Fingerprint: A Local Intrinsic Dimensionality-Based Fingerprinting Method. In: Marchand-Maillet, S., Silva, Y., Chávez, E. (eds) Similarity Search and Applications. SISAP 2018. Lecture Notes in Computer Science(), vol 11223. Springer, Cham. https://doi.org/10.1007/978-3-030-02224-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-02224-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02223-5
Online ISBN: 978-3-030-02224-2
eBook Packages: Computer ScienceComputer Science (R0)