Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Logical Characterization of Differential Privacy via Behavioral Metrics

  • Conference paper
  • First Online:
Formal Aspects of Component Software (FACS 2018)

Abstract

Differential privacy is a formal definition of privacy ensuring that sensitive information relative to individuals cannot be inferred by querying a database. In this paper, we exploit a modeling of this framework via labeled Markov Chains (LMCs) to provide a logical characterization of differential privacy: we consider a probabilistic variant of the Hennessy-Milner logic and we define a syntactical distance on formulae in it measuring their syntactic disparities. Then, we define a trace distance on LMCs in terms of the syntactic distance between the sets of formulae satisfied by them. We prove that such distance corresponds to the level of privacy of the LMCs. Moreover, we use the distance on formulae to define a real-valued semantics for them, from which we obtain a logical characterization of weak anonymity: the level of anonymity is measured in terms of the smallest formula distinguishing the considered LMCs. Then, we focus on bisimulation semantics on nondeterministic probabilistic processes and we provide a logical characterization of generalized bisimulation metrics, namely those defined via the generalized Kantorovich lifting. Our characterization is based on the notion of mimicking formula of a process and the syntactic distance on formulae, where the former captures the observable behavior of the corresponding process and allows us to characterize bisimilarity. We show that the generalized bisimulation distance on processes is equal to the syntactic distance on their mimicking formulae. Moreover, we use the distance on mimicking formulae to obtain bounds on differential privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We recall that we are using a notion of privacy in which all databases have the same number of records n, and the absence of a record is represented by a special value.

References

  1. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE Trans. Softw. Eng. 35(2), 258–273 (2009)

    Article  Google Scholar 

  2. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_79

    Chapter  Google Scholar 

  3. de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game refinement relations and metrics. Log. Methods Comput. Sci. 4(3) (2008)

    Google Scholar 

  4. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: Converging from branching to linear metrics on Markov chains. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 349–367. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9_21

    Chapter  MATH  Google Scholar 

  5. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reasoning for differential privacy. In: Proceedings of POPL. ACM (2012)

    Google Scholar 

  6. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting trace and testing equivalences for nondeterministic and probabilistic processes. Log. Methods Comput. Sci. 10(1) (2014)

    Google Scholar 

  7. Bloom, B., Fokkink, W.J., van Glabbeek, R.J.: Precongruence formats for decorated trace semantics. ACM Trans. Comput. Log. 5(1), 26–78 (2004)

    Article  MathSciNet  Google Scholar 

  8. van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems. Theor. Comput. Sci. 331(1), 115–142 (2005)

    Article  MathSciNet  Google Scholar 

  9. Castiglioni, V., Gebler, D., Tini, S.: Logical characterization of bisimulation metrics. In: Proceedings of QAPL’16. EPTCS 227, 44–62 (2016)

    Article  MathSciNet  Google Scholar 

  10. Castiglioni, V., Tini, S.: Logical characterization of trace metrics. In: Proceedings of QAPL@ETAPS 2017. EPTCS 250, 39–74 (2017)

    Article  MathSciNet  Google Scholar 

  11. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening the scope of differential privacy using metrics. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39077-7_5

    Chapter  Google Scholar 

  12. Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation metrics. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 32–46. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6_4

    Chapter  Google Scholar 

  13. Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for action-labelled quantitative transition systems. Electr. Notes Theor. Comput. Sci. 153(2), 79–96 (2006)

    Article  Google Scholar 

  14. Deng, Y., Du, W.: Logical, metric, and algorithmic characterisations of probabilistic bisimulation. CoRR abs/ arXiv:1103.4577 (2011)

  15. Deng, Y., van Glabbeek, R.J.: Characterising probabilistic processes logically - (extended abstract). In: Proceedings of LPAR-17, pp. 278–293 (2010)

    Chapter  Google Scholar 

  16. Deng, Y., Palamidessi, C., Pang, J.: Weak probabilistic anonymity. ENTCS 180(1), 55–76 (2007)

    MATH  Google Scholar 

  17. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)

    Article  MathSciNet  Google Scholar 

  18. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue of weak bisimulation for probabilistic processes. Proc. LICS 2002, 413–422 (2002)

    Google Scholar 

  19. Du, W., Deng, Y., Gebler, D.: Behavioural pseudometrics for nondeterministic probabilistic systems. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 67–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47677-3_5

    Chapter  Google Scholar 

  20. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates. In: Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 429–438. IEEE Computer Society (2013)

    Google Scholar 

  21. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  22. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Ahn, G., Yung, M., Li, N. (eds.) Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 1054–1067. ACM (2014)

    Google Scholar 

  23. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent types for differential privacy. In: POPL, pp. 357–370 (2013)

    Article  Google Scholar 

  24. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy mechanisms. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 351–360. ACM (2009)

    Google Scholar 

  25. Giacalone, A., Jou, C.C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of IFIP Work, Conference on Programming, Concepts and Methods, pp. 443–458 (1990)

    Google Scholar 

  26. Graf, S., Sifakis, J.: A modal characterization of observational congruence on finite terms of CCS. Inf. Control 68(1–3), 125–145 (1986)

    Article  MathSciNet  Google Scholar 

  27. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. FAC 6(5), 512–535 (1994)

    MATH  Google Scholar 

  28. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. Assoc. Comput. Mach. 32, 137–161 (1985)

    Article  MathSciNet  Google Scholar 

  29. Hermanns, H., Parma, A., Segala, R., Wachter, B., Zhang, L.: Probabilistic logical characterization. Inf. Comput. 209(2), 154–172 (2011)

    Article  MathSciNet  Google Scholar 

  30. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–384 (1976)

    Article  MathSciNet  Google Scholar 

  31. Kwiatkowska, M., Norman, G.: Probabilistic metric semantics for a simple language with recursion. In: Penczek, W., Szałas, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp. 419–430. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61550-4_167

    Chapter  Google Scholar 

  32. Larsen, K.G., Mardare, R., Panangaden, P.: Taking it to the limit: approximate reasoning for Markov processes. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 681–692. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_59

    Chapter  Google Scholar 

  33. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)

    Article  MathSciNet  Google Scholar 

  34. Machanavajjhala, A., Kifer, D., Abowd, J.M., Gehrke, J., Vilhuber, L.: Privacy: theory meets practice on the map. Proc. ICDE 2008, 277–286 (2008)

    Google Scholar 

  35. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Proceedings of S&P 2009, pp. 173–187 (2009)

    Google Scholar 

  36. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential privacy. In: Proceedings of ICFP, pp. 157–168. ACM (2010)

    Google Scholar 

  37. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis, MIT (1995)

    Google Scholar 

  38. Smith, A.D.: Efficient, differentially private point estimators. CoRR abs/ arXiv:0809.4794 (2008)

  39. Song, L., Deng, Y., Cai, X.: Towards automatic measurement of probabilistic processes. Proc. QSIC 2007, 50–59 (2007)

    Google Scholar 

  40. Tschantz, M.C., Kaynar, D., Datta, A.: Formal verification of differential privacy for interactive systems (extended abstract). ENTCS 276, 61–79 (2011)

    Article  MathSciNet  Google Scholar 

  41. Xu, L., Chatzikokolakis, K., Lin, H.: Metrics for differential privacy in concurrent systems. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014. LNCS, vol. 8461, pp. 199–215. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43613-4_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Castiglioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castiglioni, V., Chatzikokolakis, K., Palamidessi, C. (2018). A Logical Characterization of Differential Privacy via Behavioral Metrics. In: Bae, K., Ölveczky, P. (eds) Formal Aspects of Component Software. FACS 2018. Lecture Notes in Computer Science(), vol 11222. Springer, Cham. https://doi.org/10.1007/978-3-030-02146-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02146-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02145-0

  • Online ISBN: 978-3-030-02146-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics