Nothing Special   »   [go: up one dir, main page]

Skip to main content

Actors with Coroutine Support in Java

  • Conference paper
  • First Online:
Formal Aspects of Component Software (FACS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11222))

Included in the following conference series:

Abstract

In this paper, we introduce a Java library for actors integrated seamlessly with futures and supporting coroutines. Coroutines allow actors to suspend the execution of a message and possibly schedule other messages before resuming the suspended continuation. As such coroutines enhance actors as a major building block for constructing software components. The library is used together with a compiler to generate code from an application model into an executable program in Java. A formal description of the translation process is provided together with the most important library methods. We highlight the importance of having a scalable and efficient implementation by means of some typical benchmarks which model a large number of tasks, coroutines and actors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/JaacRepo/JAAC push-mechanism branch.

  2. 2.

    https://github.com/JaacRepo/absCompiler.

  3. 3.

    In practice, running applications using tail-recursion are affected by the program’s memory limits due to the buildup of the program’s stack memory. The compiler of ABS into Java using the library, avoids this by converting tail-recursion into a set of spawned tasks representing each iteration of the loop.

  4. 4.

    https://github.com/JaacRepo/JAAC.

  5. 5.

    https://github.com/JaacRepo/absCompiler.

References

  1. Azadbakht, K., de Boer, F.S., Serbanescu, V.: Multi-threaded actors. In: Proceedings 9th Interaction and Concurrency Experience, ICE 2016, Heraklion, Greece, 8–9 June 2016, pp. 51–66 (2016). https://doi.org/10.4204/EPTCS.223.4

    Article  MathSciNet  Google Scholar 

  2. Boer, F.D., et al.: A survey of active object languages. ACM Comput. Surv. 50(5), 76:1–76:39 (2017). https://doi.org/10.1145/3122848

    Article  Google Scholar 

  3. Clarke, D., Johnsen, E.B., Owe, O.: Concurrent objects à la carte. In: Dams, D., Hannemann, U., Steffen, M. (eds.) Concurrency, Compositionality, and Correctness. LNCS, vol. 5930, pp. 185–206. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11512-7_12

    Chapter  Google Scholar 

  4. Commons, A.: Javaflow. http://commons.apache.org/sandbox/javaflow

  5. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_22

    Chapter  Google Scholar 

  6. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_35

    Chapter  Google Scholar 

  7. Flores-Montoya, A.E., Albert, E., Genaim, S.: May-happen-in-parallel based deadlock analysis for concurrent objects. In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE -2013. LNCS, vol. 7892, pp. 273–288. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38592-6_19

    Chapter  Google Scholar 

  8. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in core ABS. Softw. Syst. Model. 15(4), 1013–1048 (2016)

    Article  Google Scholar 

  9. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based programming. Theor. Comput. Sci. 410(2), 202–220 (2009)

    Article  MathSciNet  Google Scholar 

  10. Imam, S.M., Sarkar, V.: Savina-an actor benchmark suite: enabling empirical evaluation of actor libraries. In: 4th International Workshop on Programming based on Actors Agents and Decentralized Control, pp. 67–80. ACM (2014)

    Google Scholar 

  11. Jangid, M.: Kotlin the unrivalled android programming language lineage. Imp. J. Interdiscip. Res. 3(8) (2017), http://imperialjournals.com/index.php/IJIR/article/view/5491

  12. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

    Chapter  Google Scholar 

  13. Kamburjan, E., Hähnle, R.: Uniform modeling of railway operations. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2016. CCIS, vol. 694, pp. 55–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53946-1_4

    Chapter  Google Scholar 

  14. Kamburjan, E., Hähnle, R.: Deductive verification of railway operations. In: International Conference on Reliability, Safety and Security of Railway Systems, pp. 131–147. Springer (2017)

    Google Scholar 

  15. Schäfer, J.: A programming model and language for concurrent and distributed object-oriented systems. Ph.D. thesis, University of Kaiserslautern (2011)

    Google Scholar 

  16. Serbanescu, V., Nagarajagowda, C., Azadbakht, K., de Boer, F., Nobakht, B.: Towards type-based optimizations in distributed applications using ABS and JAVA 8. In: Pop, F., Potop-Butucaru, M. (eds.) ARMS-CC 2014. LNCS, vol. 8907, pp. 103–112. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13464-2_8

    Chapter  Google Scholar 

  17. Srinivasan, S., Mycroft, A.: Kilim: isolation-typed actors for java. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70592-5_6

    Chapter  Google Scholar 

  18. Storm, E.: Scala coroutines. http://storm-enroute.com/coroutines/

  19. Taura, K., Matsuoka, S., Yonezawa, A.: ABCL/f: a future-based polymorphic typed concurrent object-oriented language - its design and implementation. In: Proceedings of the DIMACS Workshop on Specification of Parallel Algorithms, pp. 275–292. American Mathematical Society (1994)

    Google Scholar 

  20. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.: The ABS tool suite: modelling, executing and analysing distributed adaptable object-oriented systems. Int. J. Softw. Tools Technol. Transf. 14(5), 567–588 (2012). https://doi.org/10.1007/s10009-012-0250-1

    Article  Google Scholar 

  21. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-oriented concurrent programming in ABCL/1. In: Agha, G., Igarashi, A., Kobayashi, N., Masuhara, H., Matsuoka, S., Shibayama, E., Taura, K. (eds.) Concurrent Objects and Beyond. LNCS, vol. 8665, pp. 18–43. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44471-9_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlad Serbanescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serbanescu, V., Boer, F.d., Jaghoori, M.M. (2018). Actors with Coroutine Support in Java. In: Bae, K., Ölveczky, P. (eds) Formal Aspects of Component Software. FACS 2018. Lecture Notes in Computer Science(), vol 11222. Springer, Cham. https://doi.org/10.1007/978-3-030-02146-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02146-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02145-0

  • Online ISBN: 978-3-030-02146-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics