Abstract
Recent studies have shown effectiveness in using neural networks for Chinese Word Segmentation (CWS). However, these models, constrained by the domain and size of the training corpus, do not work well in domain adaptation. In this paper, we propose a novel instance-transferring method, which use valuable target domain annotated instances to improve CWS on different domains. Specifically, we introduce semantic similarity computation based on character-based n-gram embedding to select instances. Furthermore, training sentences similar to instances are used to help annotate instances. Experimental results show that our method can effectively boost cross-domain segmentation performance. We achieve state-of-the-art results on Internet literatures datasets, and competitive results to the best reported on micro-blog datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
This book can be download from https://www.qisuu.la/Shtml812.html.
References
Pei, W., Ge, T., Chang, B.: Max-margin tensor neural network for Chinese word segmentation. In: The 52nd Annual Meeting of the Association for Computational Linguistics, pp. 293–303, Baltimore, Maryland (2014)
Chen, X., Qiu, X., Zhu, C., Huang, X.: Gated recursive neural network for Chinese word segmentation. In: The 53rd Annual Meeting of the Association for Computer Linguistics, pp. 1744–1753 (2015)
Cai, D., Zhao, H.: Neural word segmentation learning for Chinese. In: The 54th Annual Meeting of the Association for Computer Linguistics, pp. 409–420 (2016)
Chen, X., Shi, Z., Qiu, X., Huang, X.: Adversarial multi-criteria learning for Chinese word segmentation, pp. 1193–1203 (2017)
Qiu, L., Zhang, Y.: Word segmentation for Chinese novels. In: AAAI, pp. 2440–2446 (2015)
Liu, Y., Zhang, Y.: Unsupervised domain adaptation for joint segmentation and POS-tagging. In: Proceedings of COLING 2012, Posters, pp. 745–754. The COLING 2012 Organizing Committee (2012)
Daume, H., Marcu, D.: Domain adaptation for statistical classifiers. J. Artif. Intell. Res. 26, 101–126 (2006)
Liu, Y., Zhang, Y., Che, W., Liu, T., Wu, F.: Domain adaptation for CRF-based Chinese word segmentation using free annotations. In: EMNLP (2014)
Zhang, M., Zhang, Y., Che, W., Liu, T.: Type-supervised domain adaptation for joint segmentation and pos-tagging. In: EACL, pp. 588–597(2014)
Jiang, W., Huang, L., Liu, Q., Lü, Y.: A cascaded linear model for joint chinese word segmentation and part-of-speech tagging. In: Meeting of the Association for Computational Linguistics, pp. 897–904, 15–20 June 2008, Columbus, Ohio, USA. DBLP (2008)
Xu, J., Ma, S., Zhang, Y., Wei, B., Cai, X., Sun, X.: Transfer deep learning for low-resource chinese word segmentation with a novel neural network. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Yu. (eds.) NLPCC 2017. LNCS (LNAI), vol. 10619, pp. 721–730. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73618-1_62
Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural correspondence learning. In: EMNLP, pp. 120–128 (2006)
Choi, H., Cho, K., Bengio, Y.: Context-dependent word representation for neural machine translation. Comput. Speech Lang. 45, 149–160 (2016)
Qin, L., Zhang, Z., Zhao, H.: Implicit discourse relation recognition with context-aware character-enhanced embeddings. In: The 26th International Conference on Computational Linguistics (COLING), Osaka, Japan, December (2016)
Bao, Z., Li, S., Gao, S., Xu, W.: Neural domain adaptation with contextualized character embedding for Chinese word segmentation. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Yu. (eds.) NLPCC 2017. LNCS (LNAI), vol. 10619, pp. 419–430. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73618-1_35
Zhou, H., Yu, Z., Zhang, Y., Huang, S., Dai, X.: Word-context character embeddings for chinese word segmentation. In: Conference on Empirical Methods in Natural Language Processing, pp. 760–766 (2017)
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition, pp. 260–270 (2016)
Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Zheng, X., Chen, H., Xu, T.: Deep learning for Chinese word segmentation and POS tagging. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 647–657. Association for Computational Linguistics (2013)
Qiu, X., Qian, P., Shi, Z.: Overview of the NLPCC-ICCPOL 2016 shared task: Chinese word segmentation for micro-blog texts. In: Lin, C.-Y., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC -2016. LNCS (LNAI), vol. 10102, pp. 901–906. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50496-4_84
Lin, D., An, X., Zhang, J.: Double-bootstrapping source data selection for instance-based transfer learning. Pattern Recognit. Lett. 34(11), 1279–1285 (2013)
Acknowledgments
The authors are supported by National Nature Science Foundation of China (Contract 61370130 and 61473294), and the Fundamental Research Funds for the Central Universities(2015JBM033), and International Science and Technology Cooperation Program of China under grant No. 2014DFA11350.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Xu, J., Miao, G., Chen, Y., Zhang, Y. (2018). Addressing Domain Adaptation for Chinese Word Segmentation with Instances-Based Transfer Learning. In: Sun, M., Liu, T., Wang, X., Liu, Z., Liu, Y. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. CCL NLP-NABD 2018 2018. Lecture Notes in Computer Science(), vol 11221. Springer, Cham. https://doi.org/10.1007/978-3-030-01716-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-01716-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01715-6
Online ISBN: 978-3-030-01716-3
eBook Packages: Computer ScienceComputer Science (R0)