Nothing Special   »   [go: up one dir, main page]

Skip to main content

Addressing Domain Adaptation for Chinese Word Segmentation with Instances-Based Transfer Learning

  • Conference paper
  • First Online:
Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (CCL 2018, NLP-NABD 2018)

Abstract

Recent studies have shown effectiveness in using neural networks for Chinese Word Segmentation (CWS). However, these models, constrained by the domain and size of the training corpus, do not work well in domain adaptation. In this paper, we propose a novel instance-transferring method, which use valuable target domain annotated instances to improve CWS on different domains. Specifically, we introduce semantic similarity computation based on character-based n-gram embedding to select instances. Furthermore, training sentences similar to instances are used to help annotate instances. Experimental results show that our method can effectively boost cross-domain segmentation performance. We achieve state-of-the-art results on Internet literatures datasets, and competitive results to the best reported on micro-blog datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pan.baidu.com/s/1hq3KKXe.

  2. 2.

    https://github.com/FudanNLP/NLPCC-WordSeg-Weibo.

  3. 3.

    This book can be download from https://www.qisuu.la/Shtml812.html.

References

  1. Pei, W., Ge, T., Chang, B.: Max-margin tensor neural network for Chinese word segmentation. In: The 52nd Annual Meeting of the Association for Computational Linguistics, pp. 293–303, Baltimore, Maryland (2014)

    Google Scholar 

  2. Chen, X., Qiu, X., Zhu, C., Huang, X.: Gated recursive neural network for Chinese word segmentation. In: The 53rd Annual Meeting of the Association for Computer Linguistics, pp. 1744–1753 (2015)

    Google Scholar 

  3. Cai, D., Zhao, H.: Neural word segmentation learning for Chinese. In: The 54th Annual Meeting of the Association for Computer Linguistics, pp. 409–420 (2016)

    Google Scholar 

  4. Chen, X., Shi, Z., Qiu, X., Huang, X.: Adversarial multi-criteria learning for Chinese word segmentation, pp. 1193–1203 (2017)

    Google Scholar 

  5. Qiu, L., Zhang, Y.: Word segmentation for Chinese novels. In: AAAI, pp. 2440–2446 (2015)

    Google Scholar 

  6. Liu, Y., Zhang, Y.: Unsupervised domain adaptation for joint segmentation and POS-tagging. In: Proceedings of COLING 2012, Posters, pp. 745–754. The COLING 2012 Organizing Committee (2012)

    Google Scholar 

  7. Daume, H., Marcu, D.: Domain adaptation for statistical classifiers. J. Artif. Intell. Res. 26, 101–126 (2006)

    Article  MathSciNet  Google Scholar 

  8. Liu, Y., Zhang, Y., Che, W., Liu, T., Wu, F.: Domain adaptation for CRF-based Chinese word segmentation using free annotations. In: EMNLP (2014)

    Google Scholar 

  9. Zhang, M., Zhang, Y., Che, W., Liu, T.: Type-supervised domain adaptation for joint segmentation and pos-tagging. In: EACL, pp. 588–597(2014)

    Google Scholar 

  10. Jiang, W., Huang, L., Liu, Q., Lü, Y.: A cascaded linear model for joint chinese word segmentation and part-of-speech tagging. In: Meeting of the Association for Computational Linguistics, pp. 897–904, 15–20 June 2008, Columbus, Ohio, USA. DBLP (2008)

    Google Scholar 

  11. Xu, J., Ma, S., Zhang, Y., Wei, B., Cai, X., Sun, X.: Transfer deep learning for low-resource chinese word segmentation with a novel neural network. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Yu. (eds.) NLPCC 2017. LNCS (LNAI), vol. 10619, pp. 721–730. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73618-1_62

    Chapter  Google Scholar 

  12. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural correspondence learning. In: EMNLP, pp. 120–128 (2006)

    Google Scholar 

  13. Choi, H., Cho, K., Bengio, Y.: Context-dependent word representation for neural machine translation. Comput. Speech Lang. 45, 149–160 (2016)

    Article  Google Scholar 

  14. Qin, L., Zhang, Z., Zhao, H.: Implicit discourse relation recognition with context-aware character-enhanced embeddings. In: The 26th International Conference on Computational Linguistics (COLING), Osaka, Japan, December (2016)

    Google Scholar 

  15. Bao, Z., Li, S., Gao, S., Xu, W.: Neural domain adaptation with contextualized character embedding for Chinese word segmentation. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Yu. (eds.) NLPCC 2017. LNCS (LNAI), vol. 10619, pp. 419–430. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73618-1_35

    Chapter  Google Scholar 

  16. Zhou, H., Yu, Z., Zhang, Y., Huang, S., Dai, X.: Word-context character embeddings for chinese word segmentation. In: Conference on Empirical Methods in Natural Language Processing, pp. 760–766 (2017)

    Google Scholar 

  17. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition, pp. 260–270 (2016)

    Google Scholar 

  18. Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  19. Zheng, X., Chen, H., Xu, T.: Deep learning for Chinese word segmentation and POS tagging. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 647–657. Association for Computational Linguistics (2013)

    Google Scholar 

  20. Qiu, X., Qian, P., Shi, Z.: Overview of the NLPCC-ICCPOL 2016 shared task: Chinese word segmentation for micro-blog texts. In: Lin, C.-Y., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC -2016. LNCS (LNAI), vol. 10102, pp. 901–906. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50496-4_84

    Chapter  Google Scholar 

  21. Lin, D., An, X., Zhang, J.: Double-bootstrapping source data selection for instance-based transfer learning. Pattern Recognit. Lett. 34(11), 1279–1285 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are supported by National Nature Science Foundation of China (Contract 61370130 and 61473294), and the Fundamental Research Funds for the Central Universities(2015JBM033), and International Science and Technology Cooperation Program of China under grant No. 2014DFA11350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Xu, J., Miao, G., Chen, Y., Zhang, Y. (2018). Addressing Domain Adaptation for Chinese Word Segmentation with Instances-Based Transfer Learning. In: Sun, M., Liu, T., Wang, X., Liu, Z., Liu, Y. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. CCL NLP-NABD 2018 2018. Lecture Notes in Computer Science(), vol 11221. Springer, Cham. https://doi.org/10.1007/978-3-030-01716-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01716-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01715-6

  • Online ISBN: 978-3-030-01716-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics