Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Fragile Watermarking and Bilinear Fuzzy Equations

  • Conference paper
  • First Online:
Cyberspace Safety and Security (CSS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11161))

Included in the following conference series:

Abstract

We present a fragile colour image watermarking based on the greatest solution of a bilinear fuzzy relation equation. The original image is coded with fuzzy transforms and divided in sub-images of sizes 2 × 2 called blocks. The watermark is applied on these blocks. A pre-processing phase is used to determine the best compression rate for the coding process. We test this scheme in tamper detection analysis on a sample of colour images of different sizes. Comparisons with various block-based fragile watermarking methods are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ansari, I.A., Pant, M., Ahn, C.W.: SVD based fragile watermarking scheme for tamper localization and self-recovery. J. Mach. Learn. Cybern. 7, 1225–1239 (2016). https://doi.org/10.1007/s1304201504551

    Article  Google Scholar 

  2. Al-Otum, H.A., Al-Taba’a, A.O.: Adaptive color image watermarking based on a modified improved pixel-wise masking technique. Comput. Electr. Eng. 5, 673–695 (2009)

    Article  Google Scholar 

  3. Barni, M.: Improved wavelet-based watermarking through pixel-wise making. IEEE Trans. Image Process. 10(5), 783–791 (2002). https://doi.org/10.1109/83.918570

    Article  MATH  Google Scholar 

  4. Chang, Y.F., Tai, W.L.: A block-based watermarking scheme for image tamper detection and self-recovery. OPTO−Electron. Rev. 21(2), 182–190 (2013). https://doi.org/10.2478/s1177201300884

    Article  MathSciNet  Google Scholar 

  5. Chen, W.C., Wang, M.S.: A fuzzy C-means clustering-based fragile watermarking scheme for image authentication. Expert Syst. Appl. 36, 1300–1307 (2009). https://doi.org/10.1016/j.eswa.2007.11.018

    Article  Google Scholar 

  6. Cox, I.J., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Stenography, 2nd edn. Morgan Kaufmann, New York (2007). ISBN 0123725852

    Google Scholar 

  7. Di Martino, F., Sessa, S.: Digital watermarking in coding/decoding processes with fuzzy relation equations. Soft. Comput. 10, 238–243 (2006). https://doi.org/10.1007/s0050000504779

    Article  Google Scholar 

  8. Di Martino, F., Sessa, S.: Digital Watermarking Strings with Images Compressed by Fuzzy Relation Equations. In: Chatterjee, A., Siarry, P. (eds.) Computational Intelligence in Image Processing. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30621-1_9

    Chapter  Google Scholar 

  9. Di Martino, F., Sessa, S.: Fragile watermarking tamper detection with images compressed by fuzzy transform. Inf. Sci. 195, 62–90 (2012). https://doi.org/10.1016/j.ins.2012.01.014

    Article  Google Scholar 

  10. Di Martino, F., Sessa, S.: Comparison between images via bilinear fuzzy relation equations. J. Ambient Intell. Humaniz. Comput. (2017). https://doi.org/10.1007/s1265201705763

  11. Hirota, K., Pedrycz, W.: Data compression with fuzzy relational equations. Fuzzy Sets Syst. 126(3), 325–335 (2002). https://doi.org/10.1016/S01650114(01)000094

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J.X.: A new algorithm for the greatest solution of fuzzy bilinear equations. Fuzzy Sets Syst. 46, 193–210 (1992). https://doi.org/10.1016/0165-0114(92)90132N

    Article  MathSciNet  MATH  Google Scholar 

  13. MeenakshiDevi, P., Venkatesan, M., Duraiswamy, K.: Fragile watermarking scheme for image authentication with tamper localization using integer wavelet transform. J. Comput. Sci. 5(11), 831–837 (2009). https://doi.org/10.3844/jcssp.2009.831.837

    Article  Google Scholar 

  14. Nobuhara, H., Pedrycz, W., Hirota, K.: A digital watermarking algorithm using image compression method based on fuzzy relational equations. In: Proceedings of FUZZ-IEEE 2002, vol. 2, pp. 1568–1573. IEEE Press, New York (2002). https://doi.org/10.1109/fuzz.2002.1006740

  15. Perfilieva, I.: Fuzzy transforms. Fuzzy Sets Syst. 157(8), 993–1023 (2006). https://doi.org/10.1016/j.fss.2005.11.012

    Article  MathSciNet  MATH  Google Scholar 

  16. Qin, C., Ji, P., Zhang, X., Dong, J., Wang, J.: Fragile image watermarking with pixel-wise recovery based on overlapping embedding strategy. Signal Process. 138, 280–293 (2017). https://doi.org/10.1016/j.sigpro.2017.03.033

    Article  Google Scholar 

  17. Shih, F.Y.: Digital Watermarking and Steganography: Fundamentals and Techniques. CRC Press, Boca Raton (2007). ISBN 9781420047578

    Google Scholar 

  18. Singh, D., Singh, S.K.: DCT based efficient fragile watermarking scheme for image authentication and restoration. Multimed. Tools Appl. 76, 953–977 (2017). https://doi.org/10.1007/s110420153010x

    Article  Google Scholar 

  19. Tong, X., Liu, Y., Zhang, M., Chen, Y.: A novel chaos-based fragile watermarking for image tampering detection and self-recovery. Signal Process.: Image Commun. 28, 301–308 (2013). https://doi.org/10.1016/j.image.2012.12.003

    Article  Google Scholar 

  20. Walton, S.: Information authentication for a slippery new age. Dr. Dobbs J. 20(4), 18–26 (1995)

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ferdinando Di Martino or Salvatore Sessa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Martino, F., Sessa, S. (2018). A Fragile Watermarking and Bilinear Fuzzy Equations. In: Castiglione, A., Pop, F., Ficco, M., Palmieri, F. (eds) Cyberspace Safety and Security. CSS 2018. Lecture Notes in Computer Science(), vol 11161. Springer, Cham. https://doi.org/10.1007/978-3-030-01689-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01689-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01688-3

  • Online ISBN: 978-3-030-01689-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics