Abstract
For metrological purposes, distance between texture images is crucial. This work study as a pair the couple texture feature/similarity measure. Starting from the Colour Contrast Occurrence Matrix (\(C_{2}O\)) definition, we propose an adapted similarity measure improving texture retrieval. In a second step, we propose a modified version of the \(C_2O\) definition including the texture’s colour average inside a modified similarity measure. Performance in texture retrieval is assessed for four challenging datasets: Vistex, Stex, Outex-TC13 and KTH-TIPS2b databases facing to the recent results from the state-of-the-art. Results show the high efficiency of the proposed approach based on a simple pair feature/similarity measure facing to more complex approaches including Convolutional Neural Networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The first Julesz conjecture states that preattentive discrimination of textures is possible only for textures that differ on second-order correlation statistics.
References
Salzburg texture image database stex, Department of Computer Sciences. http://www.wavelab.at/sources/STex
University of Oulu, Outex texture database. http://www.outex.oulu.fi
VisTex Vision Texture Database, Vision and Modeling Group, MIT Media Laboratory (1995). http://vismod.media.mit.edu/vismod/imagery/VisionTexture
Alvarez, S., Vanrell, M.: Texton theory revisited: a bag-of-words approach to combine textons. Pattern Recogn. 45(12), 4312–4325 (2012)
Arvis, V., Debain, C., Berducat, M., Benassi, A.: Generalization of the co-occurrence matrix for colour images: application to colour texture segmentation. Image Anal. Estereol 23, 63–72 (2004)
Byeon, W., Liwicki, M., Breuel, T.: Texture classification using 2D LSTM networks. In: IEEE 22nd International Conference on Pattern Recognition (ICPR) (2014)
Caputo, B., Hayman, E., Fritz, M., Eklundh, J.: Classifying materials in the real world. Image Vis. Comput. 28, 150–163 (2010)
Chatoux, H., Richard, N., Lecellier, F., Fernandez-Maloigne, C.: Différence entre distributions couleur. ORASIS: 16ème journées francophones des jeunes chercheurs en vision par ordinateur, June 2017
Florindo, J.B., Landini, G., Bruno, O.M.: Three-dimensional connectivity index for texture recognition. Pattern Recogn. Lett. 84, 239–244 (2016)
Goldberger, J., Gordon, S., Greenspan, H., et al.: An efficient image similarity measure based on approximations of kl-divergence between two gaussian mixtures. ICCV 3, 487–493 (2003)
Hauta-Kasari, M., Parkkinen, J., Jaaskelainen, T., Lenz, R.: Genaralized coocurrence matrix for multispectral texture analisis. In: 13th International Conference on Pattern Recognition I, August 1996
Julesz, B.: Texture and visual perception. Sci. Am. 212, 38–48 (1965)
Khan, F.S., Anwer, R.M., van de Weijer, J., Felsberg, M., Laaksonen, J.: Compact color-texture description for texture classification. Pattern Recogn. Lett. 51, 16–22 (2015)
Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Statist. 22(1), 79–86 (1951)
Mäenpää, T., Pietikäinen, M.: Classification with color and texture: jointly or separately? Pattern Recogn. 37, 1629–1640 (2004)
Maliani, A.D.E., Hassouni, M.E., Berthoumieu, Y., Aboutajdine, D.: Color texture classification method based on a statistical multi-model and geodesic distance. J. Vis. Commun. Image Represent. (2014)
Martnez, R., Richard, N., Fernandez, C.: Alternative to colour feature classification using colour contrast ocurrence matrix. In: Proceedings SPIE 9534, Twelfth International Conference on Quality Control by Artificial Vision, 30 April 2015
Mathiassen, J.R., Skavhaug, A., Bø, K.: Texture similarity measure using kullback-leibler divergence between gamma distributions. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 133–147. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47977-5_9
Nguyen, V.L., Vu, N.S., Phan, H.H., Gosselin, P.H.: An integrated descriptor for texture classification. In: 23rd IEEE International Conference on Pattern Recognition (ICPR) (2016)
Pham, M.T., Mercier, G., Bombrun, L.: Color texture image retrieval based on local extrema features and riemannian distance. J. Imaging 3(4) (2017)
Porebski, A., Vandenbroucke, N., Hamad, D.: LBP histogram selection for supervised color texture classification. In: ICIP, pp. 3239–3243 (2013)
Richard, N., Ivanovici, M., Bony, A.: Toward a metrology for non-uniform surface using the complexity notion. In: 4th CIE Expert Symposium on Colour and Visual Appearance, Czech Republic, Prague, pp. 40–50 September 2016
Richard, N., Martnez, R., Fernandez, C.: Colour local pattern: a texture feature for colour images. J. Int. Colour Assoc. 16, 56–68 (2016)
Sandid, F., Douik, A.: Robust color texture descriptor for material recognition. Pattern Recogn. Lett. 80, 15–23 (2016)
Mangijao, S., Hemachandran, K.: Content-based image retrieval using color moment and gabor texture feature. IJCSI Int. J. Comput. Sci. 9, 299–309 (2012)
Song, Y., Li, Q., Feng, D., Zou, J.J., Ca, W.: Texture image classification with discriminative neural networks. Ann. Math. Statist. 2(4), 367–377 (2016)
Wang, Q., Kulkarni, S., Verdú, S.: Divergence estimation for multidimensional densities via k-nearest-neighbor distances. IEEE Trans. Inf. Theory (55) (2009)
Xiaoyan, S., Shao-Hui, C., Jiang, L., Frederic, M.: Automatic diagnosis for prostate cancer using run-length matrix method. In: Medical Imaging. Procceding of SPIE 7260 (2009)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Jebali, H., Richard, N., Chatoux, H., Naouai, M. (2018). Relocated Colour Contrast Occurrence Matrix and Adapted Similarity Measure for Colour Texture Retrieval. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_51
Download citation
DOI: https://doi.org/10.1007/978-3-030-01449-0_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01448-3
Online ISBN: 978-3-030-01449-0
eBook Packages: Computer ScienceComputer Science (R0)