Nothing Special   »   [go: up one dir, main page]

Skip to main content

Relocated Colour Contrast Occurrence Matrix and Adapted Similarity Measure for Colour Texture Retrieval

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11182))

Abstract

For metrological purposes, distance between texture images is crucial. This work study as a pair the couple texture feature/similarity measure. Starting from the Colour Contrast Occurrence Matrix (\(C_{2}O\)) definition, we propose an adapted similarity measure improving texture retrieval. In a second step, we propose a modified version of the \(C_2O\) definition including the texture’s colour average inside a modified similarity measure. Performance in texture retrieval is assessed for four challenging datasets: Vistex, Stex, Outex-TC13 and KTH-TIPS2b databases facing to the recent results from the state-of-the-art. Results show the high efficiency of the proposed approach based on a simple pair feature/similarity measure facing to more complex approaches including Convolutional Neural Networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The first Julesz conjecture states that preattentive discrimination of textures is possible only for textures that differ on second-order correlation statistics.

References

  1. Salzburg texture image database stex, Department of Computer Sciences. http://www.wavelab.at/sources/STex

  2. University of Oulu, Outex texture database. http://www.outex.oulu.fi

  3. VisTex Vision Texture Database, Vision and Modeling Group, MIT Media Laboratory (1995). http://vismod.media.mit.edu/vismod/imagery/VisionTexture

  4. Alvarez, S., Vanrell, M.: Texton theory revisited: a bag-of-words approach to combine textons. Pattern Recogn. 45(12), 4312–4325 (2012)

    Article  Google Scholar 

  5. Arvis, V., Debain, C., Berducat, M., Benassi, A.: Generalization of the co-occurrence matrix for colour images: application to colour texture segmentation. Image Anal. Estereol 23, 63–72 (2004)

    Article  MATH  Google Scholar 

  6. Byeon, W., Liwicki, M., Breuel, T.: Texture classification using 2D LSTM networks. In: IEEE 22nd International Conference on Pattern Recognition (ICPR) (2014)

    Google Scholar 

  7. Caputo, B., Hayman, E., Fritz, M., Eklundh, J.: Classifying materials in the real world. Image Vis. Comput. 28, 150–163 (2010)

    Article  Google Scholar 

  8. Chatoux, H., Richard, N., Lecellier, F., Fernandez-Maloigne, C.: Différence entre distributions couleur. ORASIS: 16ème journées francophones des jeunes chercheurs en vision par ordinateur, June 2017

    Google Scholar 

  9. Florindo, J.B., Landini, G., Bruno, O.M.: Three-dimensional connectivity index for texture recognition. Pattern Recogn. Lett. 84, 239–244 (2016)

    Article  Google Scholar 

  10. Goldberger, J., Gordon, S., Greenspan, H., et al.: An efficient image similarity measure based on approximations of kl-divergence between two gaussian mixtures. ICCV 3, 487–493 (2003)

    Google Scholar 

  11. Hauta-Kasari, M., Parkkinen, J., Jaaskelainen, T., Lenz, R.: Genaralized coocurrence matrix for multispectral texture analisis. In: 13th International Conference on Pattern Recognition I, August 1996

    Google Scholar 

  12. Julesz, B.: Texture and visual perception. Sci. Am. 212, 38–48 (1965)

    Article  Google Scholar 

  13. Khan, F.S., Anwer, R.M., van de Weijer, J., Felsberg, M., Laaksonen, J.: Compact color-texture description for texture classification. Pattern Recogn. Lett. 51, 16–22 (2015)

    Article  Google Scholar 

  14. Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Statist. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mäenpää, T., Pietikäinen, M.: Classification with color and texture: jointly or separately? Pattern Recogn. 37, 1629–1640 (2004)

    Article  Google Scholar 

  16. Maliani, A.D.E., Hassouni, M.E., Berthoumieu, Y., Aboutajdine, D.: Color texture classification method based on a statistical multi-model and geodesic distance. J. Vis. Commun. Image Represent. (2014)

    Google Scholar 

  17. Martnez, R., Richard, N., Fernandez, C.: Alternative to colour feature classification using colour contrast ocurrence matrix. In: Proceedings SPIE 9534, Twelfth International Conference on Quality Control by Artificial Vision, 30 April 2015

    Google Scholar 

  18. Mathiassen, J.R., Skavhaug, A., Bø, K.: Texture similarity measure using kullback-leibler divergence between gamma distributions. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 133–147. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47977-5_9

    Chapter  Google Scholar 

  19. Nguyen, V.L., Vu, N.S., Phan, H.H., Gosselin, P.H.: An integrated descriptor for texture classification. In: 23rd IEEE International Conference on Pattern Recognition (ICPR) (2016)

    Google Scholar 

  20. Pham, M.T., Mercier, G., Bombrun, L.: Color texture image retrieval based on local extrema features and riemannian distance. J. Imaging 3(4) (2017)

    Google Scholar 

  21. Porebski, A., Vandenbroucke, N., Hamad, D.: LBP histogram selection for supervised color texture classification. In: ICIP, pp. 3239–3243 (2013)

    Google Scholar 

  22. Richard, N., Ivanovici, M., Bony, A.: Toward a metrology for non-uniform surface using the complexity notion. In: 4th CIE Expert Symposium on Colour and Visual Appearance, Czech Republic, Prague, pp. 40–50 September 2016

    Google Scholar 

  23. Richard, N., Martnez, R., Fernandez, C.: Colour local pattern: a texture feature for colour images. J. Int. Colour Assoc. 16, 56–68 (2016)

    Google Scholar 

  24. Sandid, F., Douik, A.: Robust color texture descriptor for material recognition. Pattern Recogn. Lett. 80, 15–23 (2016)

    Article  Google Scholar 

  25. Mangijao, S., Hemachandran, K.: Content-based image retrieval using color moment and gabor texture feature. IJCSI Int. J. Comput. Sci. 9, 299–309 (2012)

    Google Scholar 

  26. Song, Y., Li, Q., Feng, D., Zou, J.J., Ca, W.: Texture image classification with discriminative neural networks. Ann. Math. Statist. 2(4), 367–377 (2016)

    Google Scholar 

  27. Wang, Q., Kulkarni, S., Verdú, S.: Divergence estimation for multidimensional densities via k-nearest-neighbor distances. IEEE Trans. Inf. Theory (55) (2009)

    Google Scholar 

  28. Xiaoyan, S., Shao-Hui, C., Jiang, L., Frederic, M.: Automatic diagnosis for prostate cancer using run-length matrix method. In: Medical Imaging. Procceding of SPIE 7260 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hela Jebali or Noel Richard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jebali, H., Richard, N., Chatoux, H., Naouai, M. (2018). Relocated Colour Contrast Occurrence Matrix and Adapted Similarity Measure for Colour Texture Retrieval. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01449-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01448-3

  • Online ISBN: 978-3-030-01449-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics