Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Simpler Construction of Identity-Based Ring Signatures from Lattices

  • Conference paper
  • First Online:
Provable Security (ProvSec 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11192))

Included in the following conference series:

Abstract

Ring signature is an attractive cryptographic primitive that has been widely used in many fields because of its anonymity. Traditional ring signatures rely on the public key infrastructure and require lots of digital certificates. To eliminate the digital certificates, Zhang and Kim (Asiacrypt’02) introduced the concept of identity-based ring signatures. So far, however there is few identity-based ring signatures built on lattice-related assumptions and they are not efficient enough for applications. In this paper we present a new identity-based ring signature scheme from lattices. Compared with the existing counterparts, our scheme has the advantages of higher computational efficiency and lower storage overhead. We prove the security of our construction in the random oracle model under the short integer solution assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_26

    Chapter  Google Scholar 

  2. Ajtai, M.: Generating hard instances of lattice problems. In Annual ACM Symposium on Theory of Computing, pp. 99–108. ACM (1996)

    Google Scholar 

  3. Au, M.H., Liu, J.K., Yuen, T.H., Wong, D.S.: ID-Based ring signature scheme secure in the standard model. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 1–16. Springer, Heidelberg (2006). https://doi.org/10.1007/11908739_1

    Chapter  Google Scholar 

  4. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: ACM Conference on Computer and Communications Security, pp. 390–399. ACM (2006)

    Google Scholar 

  5. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_4

    Chapter  Google Scholar 

  6. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 404–434. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_14

    Chapter  Google Scholar 

  7. Boyen, X., Li, Q.: All-but-many lossy trapdoor functions from lattices and applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 298–331. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_11

    Chapter  Google Scholar 

  8. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  9. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22

    Chapter  Google Scholar 

  10. Chow, S.S., Wei, V.K., Liu, J.K., Yuen, T.H.: Ring signatures without random oracles. In: ACM Symposium on Information, Computer and Communications Security, pp. 297–302. ACM (2006)

    Google Scholar 

  11. Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient identity based ring signature. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 499–512. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_34

    Chapter  Google Scholar 

  12. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_36

    Chapter  MATH  Google Scholar 

  13. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

    Chapter  Google Scholar 

  14. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with arbitrary modulus. IACR Cryptology ePrint Archive 2017:308 (2017)

    Google Scholar 

  15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)

    Google Scholar 

  16. Herranz, J.: Identity-based ring signatures from RSA. Theoret. Comput. Sci. 389(1–2), 100–117 (2007)

    Article  MathSciNet  Google Scholar 

  17. Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24582-7_20

    Chapter  Google Scholar 

  18. Herranz, J., Sáez, G.: New identity-based ring signature schemes. In: Lopez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 27–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30191-2_3

    Chapter  Google Scholar 

  19. Hülsing, A., Lange, T., Smeets, K.: Rounded Gaussians. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 728–757. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_25

    Chapter  Google Scholar 

  20. Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor functions and selective opening chosen-ciphertext security from LWE. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 332–364. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_12

    Chapter  Google Scholar 

  21. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  22. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  23. Lyubashevsky, V., Wichs, D.: Simple lattice trapdoor sampling from a broad class of distributions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 716–730. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_32

    Chapter  Google Scholar 

  24. Aguilar Melchor, C., Bettaieb, S., Boyen, X., Fousse, L., Gaborit, P.: Adapting Lyubashevsky’s signature schemes to the ring signature setting. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 1–25. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7_1

    Chapter  Google Scholar 

  25. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  26. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  Google Scholar 

  27. Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic, constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 455–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_16

    Chapter  Google Scholar 

  28. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  29. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_12

    Chapter  Google Scholar 

  30. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  31. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  32. Wang, J.: Identity-based ring signature from lattice basis delegation (2010). https://eprint.iacr.org/2010/378

  33. Wang, J., Sun, B.: Ring signature schemes from lattice basis delegation. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 15–28. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25243-3_2

    Chapter  Google Scholar 

  34. Zhang, F., Kim, K.: ID-Based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_33

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for helpful comments. This work is supported by the National Natural Science Foundation of China under Grant 61502443.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaomiao Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, G., Tian, M. (2018). A Simpler Construction of Identity-Based Ring Signatures from Lattices. In: Baek, J., Susilo, W., Kim, J. (eds) Provable Security. ProvSec 2018. Lecture Notes in Computer Science(), vol 11192. Springer, Cham. https://doi.org/10.1007/978-3-030-01446-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01446-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01445-2

  • Online ISBN: 978-3-030-01446-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics