Nothing Special   »   [go: up one dir, main page]

Skip to main content

Combining Behaviors and Demographics to Segment Online Audiences: Experiments with a YouTube Channel

  • Conference paper
  • First Online:
Internet Science (INSCI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11193))

Included in the following conference series:

  • 3307 Accesses

Abstract

Social media channels with audiences in the millions are increasingly common. Efforts at segmenting audiences for populations of these sizes can result in hundreds of audience segments, as the compositions of the overall audiences tend to be complex. Although understanding audience segments is important for strategic planning, tactical decision making, and content creation, it is unrealistic for human decision makers to effectively utilize hundreds of audience segments in these tasks. In this research, we present efforts at simplifying the segmentation of audience populations to increase their practical utility. Using millions of interactions with hundreds of thousands of viewers with an organization’s online content collection, we first isolate the maximum number of audience segments, based on behavioral profiling, and then demonstrate a computational approach of using non-negative matrix factorization to reduce this number to 42 segments that are both impactful and representative segments of the overall population. Initial results are promising, and we present avenues for future research leveraging our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Part of the Al Jazeera Media Network.

References

  1. Nguyen, T., Zhou, L., Spiegler, V., Ieromonachou, P., Lin, Y.: Big data analytics in supply chain management: a state-of-the-art literature review. Comput. Oper. Res., 254–264 (2017)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, R., Dhar, V.: Editorial—big data, data science, and analytics: the opportunity and challenge for IS research. Inf. Syst. Res. 25, 443–448 (2014)

    Article  Google Scholar 

  3. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manag. 35, 137–144 (2015)

    Article  Google Scholar 

  4. Edwards, J.S., Taborda, E.R.: Using knowledge management to give context to analytics and big data and reduce strategic risk. Proc. Comput. Sci. 99, 36–49 (2016)

    Article  Google Scholar 

  5. Hendahewa, C., Shah, C.: Evaluating user search trails in exploratory search tasks. Inf. Process. Manag. 53, 905–922 (2017)

    Article  Google Scholar 

  6. Salminen, J., et al.: From 2,772 segments to five personas: summarizing a diverse online audience by generating culturally adapted personas. First Monday 23 (2018). Article no. 8415

    Google Scholar 

  7. Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci. 12, 257–285 (1988)

    Article  Google Scholar 

  8. Cho, M., Auger, G.A.: Extrovert and engaged? Exploring the connection between personality and involvement of stakeholders and the perceived relationship investment of nonprofit organizations. Publ. Relat. Rev. 43, 729–737 (2017)

    Article  Google Scholar 

  9. Shafto, A.: Mastering audience segmentation: how to apply segmentation techniques to improve internal communication. Melcrum (2006)

    Google Scholar 

  10. Stern, B.B.: A revised communication model for advertising: multiple dimensions of the source, the message, and the recipient. J. Advert. 23, 5–15 (1994)

    Article  Google Scholar 

  11. Smith, W.R.: Product differentiation and market segmentation as alternative marketing strategies. J. Mark. 21, 3–8 (1956)

    Article  Google Scholar 

  12. Ortiz-Cordova, A., Jansen, B.J.: Classifying web search queries to identify high revenue generating customers. J. Am. Soc. Inf. Sci. Technol. 63, 1426–1441 (2012)

    Article  Google Scholar 

  13. Tkaczynski, A., Rundle-Thiele, S.R., Prebensen, N.K.: To segment or not? That is the question. J. Vacat. Mark. 24, 16–28 (2018)

    Article  Google Scholar 

  14. An, J., Kwak, H.: Multidimensional analysis of the news consumption of different demographic groups on a nationwide scale. In: Ciampaglia, G.L., Mashhadi, A., Yasseri, T. (eds.) SocInfo 2017. LNCS, vol. 10539, pp. 124–142. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67217-5_9

    Chapter  Google Scholar 

  15. Jansen, B.J., Booth, D.: Classifying web queries by topic and user intent. In: CHI 2010 Extended Abstracts on Human Factors in Computing Systems, pp. 4285–4290. ACM, New York (2010)

    Google Scholar 

  16. Liu, Z., Jansen, B.J.: Questioner or question: predicting the response rate in social question and answering on Sina Weibo. Inf. Process. Manag. 54, 159–174 (2018)

    Article  Google Scholar 

  17. Gonzalez Camacho, L.A., Alves-Souza, S.N.: Social network data to alleviate cold-start in recommender system: a systematic review. Inf. Process. Manag. 54, 529–544 (2018)

    Article  Google Scholar 

  18. Nguyen, H.T., Le Nguyen, M.: Multilingual opinion mining on YouTube—a convolutional N-gram BiLSTM word embedding. Inf. Process. Manag. 54, 451–462 (2018)

    Article  Google Scholar 

  19. Han, S., He, D., Chi, Y.: Understanding and modeling behavior patterns in cross-device web search. Proc. Assoc. Inf. Sci. Technol. 54, 150–158 (2017)

    Article  Google Scholar 

  20. Garcia, D., Abisheva, A., Schweitzer, F.: Evaluative patterns and incentives in YouTube. In: Ciampaglia, G.L., Mashhadi, A., Yasseri, T. (eds.) SocInfo 2017. LNCS, vol. 10540, pp. 301–315. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67256-4_24

    Chapter  Google Scholar 

  21. Zhou, Q., Zhang, C.: Detecting dietary preference of social media users in China via sentiment analysis. Proc. Assoc. Inf. Sci. Technol. 54, 523–527 (2017)

    Article  Google Scholar 

  22. Fletcher, R., Nielsen, R.K.: Are news audiences increasingly fragmented? A cross-national comparative analysis of cross-platform news audience fragmentation and duplication. J. Commun. 67, 476–498 (2017)

    Article  Google Scholar 

  23. Lo, S.L., Chiong, R., Cornforth, D.: Ranking of high-value social audiences on Twitter. Decis. Support Syst. 85, 34–48 (2016)

    Article  Google Scholar 

  24. Araújo, C.S., Magno, G., Meira Jr., W., Almeida, V., Hartung, P., Doneda, D.: Characterizing videos, audience and advertising in Youtube channels for kids (2017). arXiv:1707.00971 [cs]

    Google Scholar 

  25. Salminen, J., Jung, S.-G., An, J., Kwak, H., Jansen, B.J.: Findings of a user study of automatically generated personas. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, pp. LBW097:1–LBW097:6. ACM, New York (2018)

    Google Scholar 

  26. Burkell, J., Fortier, A.: Could we do better? Behavioural tracking on recommended consumer health websites. Health Inf. Libr. J. 32, 182–194 (2015)

    Article  Google Scholar 

  27. Kim, Y., Miller, A., Chon, M.-G.: Communicating with key publics in crisis communication: the synthetic approach to the public segmentation in CAPS (communicative action in problem solving). J. Conting. Crisis Manag. 24, 82–94 (2016)

    Article  Google Scholar 

  28. Nelson, J.L.: And deliver us to segmentation. J. Pract. 12, 204–219 (2018)

    Google Scholar 

  29. Ashley, C., Tuten, T.: Creative strategies in social media marketing: an exploratory study of branded social content and consumer engagement. Psychol. Mark. 32, 15–27 (2015)

    Article  Google Scholar 

  30. Nielsen, L., Storgaard Hansen, K.: Personas is applicable: a study on the use of personas in Denmark. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1665–1674. ACM (2014)

    Google Scholar 

  31. An, J., Kwak, H., Jansen, B.J.: Personas for content creators via decomposed aggregate audience statistics. In: Proceedings of Advances in Social Network Analysis and Mining (ASONAM 2017), Sydney, Australia (2017)

    Google Scholar 

  32. Jung, S.-G., An, J., Kwak, H., Ahmad, M., Nielsen, L., Jansen, B.J.: Persona generation from aggregated social media data. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1748–1755. ACM, New York (2017)

    Google Scholar 

  33. Jansen, B.J., An, J., Kwak, H., Salminen, J., Jung, S.-G.: Viewed by too many or viewed too little: using information dissemination for audience segmentation. Presented at the Association for Information Science and Technology Annual Meeting 2017 (ASIST2017), Washington DC, USA, 27 November 2017

    Google Scholar 

  34. Miller, G.A.: The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)

    Article  Google Scholar 

  35. Salminen, J., et al.: Generating cultural personas from social data: a perspective of middle eastern users. In: Proceedings of the Fourth International Symposium on Social Networks Analysis, Management and Security (SNAMS-2017), Prague, Czech Republic (2017)

    Google Scholar 

  36. AL-Smadi, M., Jaradat, Z., AL-Ayyoub, M., Jararweh, Y.: Paraphrase identification and semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic features. Inf. Process. Manag. 53, 640–652 (2017)

    Article  Google Scholar 

  37. Jansen, B.J., Sobel, K., Cook, G.: Classifying ecommerce information sharing behaviour by youths on social networking sites. J. Inf. Sci. 37, 120–136 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joni Salminen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jansen, B.J., Jung, Sg., Salminen, J., An, J., Kwak, H. (2018). Combining Behaviors and Demographics to Segment Online Audiences: Experiments with a YouTube Channel. In: Bodrunova, S. (eds) Internet Science. INSCI 2018. Lecture Notes in Computer Science(), vol 11193. Springer, Cham. https://doi.org/10.1007/978-3-030-01437-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01437-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01436-0

  • Online ISBN: 978-3-030-01437-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics