Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast and Accurate Affect Prediction Using a Hierarchy of Random Forests

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11139))

Included in the following conference series:

  • 7362 Accesses

Abstract

Hierarchical systems are powerful tools to deal with non-linear data with a high variability. We show in this paper that regressing a bounded variable on such data is a challenging task. As an alternate, we propose here a two-step process. First, an ensemble of ordinal classifiers affect the observation to a given range of the variable to predict and a discrete estimate of the variable. Then, a regressor is trained locally on this range and its neighbors and provides a finer continuous estimate. Experiments on affect audio data from the AVEC’2014 and AV+EC’2015 challenges show that this cascading process can be compared favorably to the state of the art and challengers results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bitouk, D., Verma, R., Nenkova, A.: Class-level spectral features for emotion recognition. Speech Commun. 52(7), 613–625 (2010)

    Article  Google Scholar 

  2. Chang, J., Scherer, S.: Learning representations of emotional speech with deep convolutional generative adversarial networks. In: ICASSP, pp. 2746–2750, 2017

    Google Scholar 

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, P.W.: SMOTE: synthetic minority oversampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  4. Drucker, H., Burges, C., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems, pp. 155–161 (1997)

    Google Scholar 

  5. Ekman, P.: Basic emotions. In: Handbook of Cognition and Emotion, pp. 45–60. Wiley, New York (1999)

    Chapter  Google Scholar 

  6. Frank, E., Hall, M.: A simple approach to ordinal classification. In: De Raedt, L., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 145–156. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44795-4_13

    Chapter  Google Scholar 

  7. Fontaine, J.R., Scherer, K.R., Roesch, E.B., Ellsworth, P.C.: The world of emotions is not two-dimensional. Psychol. Sci. 18(12), 1050–1057 (2007)

    Article  Google Scholar 

  8. Grandjean, D., Sander, D., Scherer, K.R.: Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization. Conscious. Cogn. 17(2), 484–495 (2008)

    Article  Google Scholar 

  9. Guo, G., Fu, Y., Wang, T.S., Dyer, C.R.: Locally adjusted robust regression for human age estimation. In: WACV (2008)

    Google Scholar 

  10. Han, J., Zhang, Z., Ringeval, F., Schuller, B.: Prediction-based learning for continuous emotion recognition in speech. In: ICASSP, pp. 5005–5009 (2017)

    Google Scholar 

  11. He, L., Jiang, D., Yang, L., Pei, E., Hu, P., Sahli, H.: Multimodal affective dimension prediction using deep bidirectional long short-term memory recurrent neural networks. In: AVEC, pp. 73–80 (2015)

    Google Scholar 

  12. Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  13. Nicolaou, M.A., Gunes, H., Pantic, M.: Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space. IEEE Trans. Affect. Comput. 2(2), 92–105 (2011)

    Article  Google Scholar 

  14. Noroozi, F., Sapinski, T., Kaminska, D., Anbarjafari, G.: Vocal-based emotion recognition using random forests and decision tree. Int. J. Speech Technol. 20(2), 239–246 (2017)

    Article  Google Scholar 

  15. Qiao, X.: Noncrossing ordinal classification. arXiv:1505.03442 (2015)

  16. Ringeval, F., et al.: AV+EC 2015: the first affect recognition challenge bridging across audio, video, and physiological data. In: AVEC, pp. 3–8 (2015)

    Google Scholar 

  17. Russell, J.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)

    Article  Google Scholar 

  18. Sethu, V., Ambikairajah, E., Epps, J.: Empirical mode decomposition based weighted frequency feature for speech-based emotion classification. In: ICASSP, pp. 5017–5020 (2008)

    Google Scholar 

  19. Thukral, P., Mitra, K., Chellappa, R.: A hierarchical approach for human age estimation. In: ICASSP, pp. 1529–1532 (2012)

    Google Scholar 

  20. Valstar, M.F., et al.: AVEC 2014: 3D dimensional affect and depression recognition challenge. In: AVEC (2014)

    Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the French National Agency (ANR) in the frame of its FRQC program (TEEC, project number ANR-16-FRQC-0009-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Sazadaly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sazadaly, M., Pinchon, P., Fagot, A., Prevost, L., Bertrand, M.M. (2018). Fast and Accurate Affect Prediction Using a Hierarchy of Random Forests. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01418-6_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01417-9

  • Online ISBN: 978-3-030-01418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics