Abstract
Symbolic Data Analysis provides suitable new types of variable that can take into account the variability present in the observed measurements. This paper proposes a partitioning fuzzy clustering algorithm for interval-valued data based on suitable adaptive Euclidean distance and entropy regularization. The proposed method optimizes an objective function by alternating three steps aiming to compute the fuzzy cluster representatives, the fuzzy partition, as well as relevance weights for the interval-valued variables. Experiments on synthetic and real datasets corroborate the usefulness of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, vol. 463. ACM press, New York (1999)
Bock, H.H., Diday, E.: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-57155-8
Boudou, A., Ribeyre, F.: Mercury in the food web: accumulation and transfer mechanisms. Met. Ions Biol. Syst. 34, 289–320 (1997)
de Carvalho, F.D.A.: Fuzzy c-means clustering methods for symbolic interval data. Pattern Recognit. Lett. 28(4), 423–437 (2007)
Diday, E.: Classification automatique avec distances adaptatives. RAIRO Inform. Comput. Sci. 11(4), 329–349 (1977)
Duarte Silva, P., Brito, P.: Model and analyse interval data. https://cran.r-project.org/web/packages/MAINT.Data/index.html. Accessed 27 Apr 2018
Frigui, H., Hwang, C., Rhee, F.C.H.: Clustering and aggregation of relational data with applications to image database categorization. Pattern Recognit. 40(11), 3053–3068 (2007)
Frigui, H., Nasraoui, O.: Unsupervised learning of prototypes and attribute weights. Pattern Recognit. 37(3), 567–581 (2004)
Guru, D., Kiranagi, B.B., Nagabhushan, P.: Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns. Pattern Recognit. Lett. 25(10), 1203–1213 (2004)
Huang, J.Z., Ng, M.K., Rong, H., Li, Z.: Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 657–668 (2005)
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
Hullermeier, E., Rifqi, M.: A fuzzy variant of the rand index for comparing clustering structures. In: Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, IFSA-EUSFLAT 2009 (2009)
Ichino, M., Yaguchi, H.: Generalized Minkowski metrics for mixed feature-type data analysis. IEEE Trans. Syst. Man Cybern. 24(4), 698–708 (1994)
Irpino, A., Verde, R., de Carvalho, F.A.T.: Fuzzy clustering of distributional data with automatic weighting of variable components. Inf. Sci. 406–407, 248–268 (2017)
Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)
Tsai, C., Chiu, C.: Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm. Comput. Stat. Data Anal. 52, 4658–4672 (2008)
Yang, M.S., Hwang, P.Y., Chen, D.H.: Fuzzy clustering algorithms for mixed feature variables. Fuzzy Sets Syst. 141(2), 301–317 (2004)
Acknowledgment
The authors would like to thank CNPq and FACEPE (Brazilian agencies) for their financial support and the anonymous referees for their helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Rodríguez, S.I.R., de Carvalho, F.d.A.T. (2018). Fuzzy Clustering Algorithm Based on Adaptive Euclidean Distance and Entropy Regularization for Interval-Valued Data. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_68
Download citation
DOI: https://doi.org/10.1007/978-3-030-01418-6_68
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01417-9
Online ISBN: 978-3-030-01418-6
eBook Packages: Computer ScienceComputer Science (R0)