Nothing Special   »   [go: up one dir, main page]

Skip to main content

Affinity Propagation Based Closed-Form Semi-supervised Metric Learning Framework

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11139))

Included in the following conference series:

Abstract

Recent state-of-the-art deep metric learning approaches require large number of labeled examples for their success. They cannot directly exploit unlabeled data. When labeled data is scarce, it is very essential to be able to make use of additionally available unlabeled data to learn a distance metric in a semi-supervised manner. Despite the presence of a few traditional, non-deep semi-supervised metric learning approaches, they mostly rely on the min-max principle to encode the pairwise constraints, although there are a number of other ways as offered by traditional weakly-supervised metric learning approaches. Moreover, there is no flow of information from the available pairwise constraints to the unlabeled data, which could be beneficial. This paper proposes to learn a new metric by constraining it to be close to a prior metric while propagating the affinities among pairwise constraints to the unlabeled data via a closed-form solution. The choice of a different prior metric thus enables encoding of the pairwise constraints by following formulations other than the min-max principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atzmon, Y., Shalit, U., Chechik, G.: Learning sparse metrics, one feature at a time. J. Mach. Learn. Res. (JMLR) 1, 1–48 (2015)

    Google Scholar 

  2. Baghshah, M.S., Shouraki, S.B.: Semi-supervised metric learning using pairwise constraints. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 1217–1222 (2009)

    Google Scholar 

  3. Bhojanapalli, S., Boumal, N., Jain, P., Netrapalli, P.: Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form. arXiv preprint arXiv:1803.00186 (2018)

  4. Bhojanapalli, S., Kyrillidis, A., Sanghavi, S.: Dropping convexity for faster semi-definite optimization. In: Proceedings of Conference on Learning Theory (COLT), pp. 530–582 (2016)

    Google Scholar 

  5. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from national university of Singapore. In: Proceedings of ACM International Conference on Image and Video Retrieval (CIVR), p. 48 (2009)

    Google Scholar 

  6. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: Proceedings of International Conference on Machine Learning (ICML), pp. 209–216 (2007)

    Google Scholar 

  7. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity measures. In: Proceedings of International Conference on World Wide Web (WWW), pp. 577–586. ACM (2011)

    Google Scholar 

  8. Duan, Y., Zheng, W., Lin, X., Lu, J., Zhou, J.: Deep adversarial metric learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2780–2789 (2018)

    Google Scholar 

  9. Faraki, M., Harandi, M.T., Porikli, F.: Large-scale metric learning: a voyage from shallow to deep. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4339–4346 (2018)

    Article  Google Scholar 

  10. Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition, and tracking. In: IEEE International Workshop on Performance Evaluation for Tracking and Surveillance (PETS), vol. 3 (2007)

    Google Scholar 

  11. Harandi, M., Salzmann, M., Hartley, R.: Joint dimensionality reduction and metric learning: a geometric take. In: Proceedings of International Conference on Machine Learning (ICML) (2017)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  13. He, X., Niyogi, P.: Locality preserving projections. In: Proceedings of Neural Information Processing Systems (NIPS), pp. 153–160 (2003)

    Google Scholar 

  14. Hoi, S.C., Liu, W., Chang, S.F.: Semi-supervised distance metric learning for collaborative image retrieval and clustering. ACM Trans. Multimed. Comput. Commun. Appl. 6(3), 18 (2010)

    Article  Google Scholar 

  15. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Mining on manifolds: metric learning without labels. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  16. Koestinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric learning from equivalence constraints. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2288–2295 (2012)

    Google Scholar 

  17. Liu, W., Ma, S., Tao, D., Liu, J., Liu, P.: Semi-supervised sparse metric learning using alternating linearization optimization. In: Proc. of ACM International Conference on Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), pp. 1139–1148 (2010)

    Google Scholar 

  18. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss distance metric learning using proxies. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  19. Niu, G., Dai, B., Yamada, M., Sugiyama, M.: Information-theoretic semi-supervised metric learning via entropy regularization. Neural Comput. 26(8), 1717–1762 (2014)

    Article  MathSciNet  Google Scholar 

  20. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4004–4012 (2016)

    Google Scholar 

  21. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)

    Google Scholar 

  22. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Proceedings of Neural Information Processing Systems (NIPS), pp. 1857–1865 (2016)

    Google Scholar 

  23. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  24. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical report (2011)

    Google Scholar 

  25. Wang, J., Zhou, F., Wen, S., Liu, X., Lin, Y.: Deep metric learning with angular loss. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  26. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. arXiv preprint arXiv:1707.00600 (2017)

  27. Ying, S., Wen, Z., Shi, J., Peng, Y., Peng, J., Qiao, H.: Manifold preserving: an intrinsic approach for semisupervised distance metric learning. IEEE Trans. Neural Netw. Learn. Syst. (2017)

    Google Scholar 

  28. Zadeh, P., Hosseini, R., Sra, S.: Geometric mean metric learning. In: Proceedings of International Conference on Machine Learning (ICML), pp. 2464–2471 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjal Kr Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kr Dutta, U., Chandra Sekhar, C. (2018). Affinity Propagation Based Closed-Form Semi-supervised Metric Learning Framework. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01418-6_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01417-9

  • Online ISBN: 978-3-030-01418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics