Nothing Special   »   [go: up one dir, main page]

Skip to main content

Artwork Retrieval Based on Similarity of Touch Using Convolutional Neural Network

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11139))

Included in the following conference series:

  • 7498 Accesses

Abstract

In this paper, we propose an artwork retrieval based on similarity of touch using convolutional neural network. In the proposed system, a convolutional neural network is learned so that images can be classified into a group based on a touch, with saturation and value and the histogram of saturation and value as input data, and the trained network is used to realize the retrieval. Using the learned convolution neural network, feature vectors are generated for all images used for learning. The output of the full-connected layer before the soft-max layer when each image is input is obtained and normalized so that the magnitude becomes 1.0 is used as the feature vector. Then, the image and the normalized feature vector corresponding to the image are associated and stored in the database. A retrieval is realized by inputting an image as a retrieval key to the input layer, generating a feature vector, and comparing it with feature vectors in the database. We carried out a series of computer experiments and confirmed that the proposed system can realize artwork retrieval based on similarity of touch with higher accuracy than the conventional system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mogami, H., Otake, M., Kouno, N., Osana, Y.: Self-organizing map with refractoriness and its application to image retrieval. In: Proceedings of IEEE and INNS International Joint Conference on Neural Networks, Vancouver (2006)

    Google Scholar 

  2. Kawai, H., Osana, Y.: Search accuracy improvement in artwork retrieval based on similarity of touch. In: Proceedings of International Conference, Como (2015)

    Google Scholar 

  3. Ojala, T., Pietiäinen, M., Harwood, D.: A comparative study of texture measures with classification based on distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  4. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  6. Buckley, C., Voorhees, E.M.: Evaluating evaluation measure stability. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 33–40 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Osana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fujita, T., Osana, Y. (2018). Artwork Retrieval Based on Similarity of Touch Using Convolutional Neural Network. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01418-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01417-9

  • Online ISBN: 978-3-030-01418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics