Nothing Special   »   [go: up one dir, main page]

Skip to main content

Speed-Up Algorithms for Happiness-Maximizing Representative Databases

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2018)

Abstract

Helping user identify the ideal results of a manageable size k from a database, such that each user’s ideal results will take a big picture of the whole database. This problem has been studied extensively in recent years under various models, resulting in a large number of interesting consequences. In this paper, we introduce the concept of minimum happiness ratio maximization and show that our objective function exhibits the property of monotonictity. Based on this property, two efficient polynomial-time approximation algorithms called Lazy NWF-Greedy and Lazy Stochastic-Greedy are developed. Both of them are extended to exploit lazy evaluations, yielding significant speedups as to basic RDP-Greedy algorithm. Extensive experiments on both synthetic and real datasets show that our Lazy NWF-Greedy achieves the same minimum happiness ratio as the best-known RDP-Greedy algorithm but can greatly reduce the number of function evaluations and our Lazy Stochastic-Greedy sacrifices a little happiness ratio but significantly decreases the number of function evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our minimum happiness ratio maximization is consistent with the k-regret proposed in [10]. However, k-regret denotes different things by Nanongkai et al. [10] and Chester et al. [13]. In the former, k-regret is the representative set of k objects, whereas in the latter, k-regret is used to denote the regret between the scores of top 1 and top k. To avoid confusion, we refer k-regret in [13] to kRMS.

  2. 2.

    https://www.gnu.org/software/glpk/.

References

  1. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv. 40(4), 11:1–11:58 (2008)

    Article  Google Scholar 

  2. Lian, X., Chen, L.: Top-k dominating queries in uncertain databases. In: EDBT, pp. 660–671 (2009)

    Google Scholar 

  3. Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Top-k query processing in uncertain databases. In: ICDE, pp. 896–905 (2007)

    Google Scholar 

  4. Lee, J., You, G.W., Hwang, S.W.: Personalized top-k skyline queries in high-dimensional space. Inf. Syst. 34(1), 45–61 (2009)

    Article  Google Scholar 

  5. Börzsöny, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp. 421–430 (2001)

    Google Scholar 

  6. Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: Finding k-dominant skylines in high dimensional space. In: SIGMOD, pp. 503–514. ACM (2006)

    Google Scholar 

  7. Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On high dimensional skylines. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006). https://doi.org/10.1007/11687238_30

    Chapter  Google Scholar 

  8. Mindolin, D., Chomicki, J.: Discovering relative importance of skyline attributes. In: VLDB, pp. 610–621 (2009)

    Article  Google Scholar 

  9. Papadias, D., Tao, Y., Greg, F., Seeger, B.: Progressive skyline computation in database systems. TODS 30(1), 41–82 (2005)

    Article  Google Scholar 

  10. Nanongkai, D., Sarma, A.D., Lall, A., Lipton, R.J., Xu, J.: Regret-minimizing representative databases. In: VLDB, pp. 1114–1124 (2010)

    Article  Google Scholar 

  11. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)

    Google Scholar 

  12. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrak, J., Krause, A.: Lazier than lazy greedy. In AAAI, pp. 1812–1818 (2015)

    Google Scholar 

  13. Chester, S., Thomo, A., Venkatesh, S., Whitesides, S.: Computing k-regret minimizing sets. In: VLDB, pp. 389–400 (2014)

    Article  Google Scholar 

  14. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most representative skyline operator. In: ICDE, pp. 86–95 (2007)

    Google Scholar 

  15. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: ICDE, pp. 892–903, 2009

    Google Scholar 

  16. Magnani, M., Assent, I., Mortensen, M.L.: Taking the big picture: representative skylines based on significance and diversity. VLDB J. 23(5), 795–815 (2014). October

    Article  Google Scholar 

  17. Søholm, M., Chester, S., Assent, I.: Maximum coverage representative skyline. In: EDBT, pp. 702–703 (2016)

    Google Scholar 

  18. Bai, M., et al.: Discovering the \(k\) representative skyline over a sliding window. TKDE 28(8), 2041–2056 (2016)

    Google Scholar 

  19. Peng, P., Wong, R.C.W.: Geometry approach for k-regret query. In: ICDE, pp. 772–783 (2014)

    Google Scholar 

  20. Nanongkai, D., Lall, A., Sarma, A.D., Makino, K.: Interactive regret minimization. In: SIGMOD, pp. 109–120 (2012)

    Google Scholar 

  21. Faulkner, T.K., Brackenbury, W., Lall, A.: k-regret queries with nonlinear utilities. In: VLDB, pp. 2098–2109 (2015)

    Google Scholar 

  22. Zeighami, S., Wong, R.C-W.: Minimizing average regret ratio in database. In: SIGMOD, pp. 2265–2266 (2016)

    Google Scholar 

  23. Asudeh, A., Nazi, A., Zhang, N., Das, G.: Efficient computation of regret-ratio minimizing set: a compact maxima representative. In: SIGMOD, pp. 821–834 (2017)

    Google Scholar 

  24. Cao, W. et al.: k-regret minimizing set: efficient algorithms and hardness. In: ICDT, pp. 11:1–19 (2017)

    Google Scholar 

  25. Agarwal, P.K., Kumar, N., Sintos, S., Suri, S.: Efficient algorithms for k-regret minimizing sets. In: International Symposium on Experimental Algorithms, pp. 7:1–7:23 (2017)

    Google Scholar 

  26. Kumar, N., Sintos, S.: Faster approximation algorithm for the k-regret minimizing set and related problems. In: Proceedings of the 20th Workshop on Algorithm Engineering and Experiments, pp. 62–74 (2018)

    Chapter  Google Scholar 

  27. Asudeh, A., Nazi, A., Zhang, N., Das, G., Jagadish, H.V.: RRR: rank-regret representative. CoRR (2018)

    Google Scholar 

  28. Xie, M., Wong, R.C.-W., Li, J., Long, C., Lall, A.: Efficient k-regret query algorithm with restriction-free bound for any dimensionality. In: SIGMOD, pp. 959–974 (2018)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by the National Natural Science Foundation of China under grant Nos. U1733112,61702260, the Natural Science Foundation of Jiangsu Province of China under grant No. BK20140826, the Fundamental Research Funds for the Central Universities under grant No. NS2015095, Funding of Graduate Innovation Center in NUAA under grant No. KFJJ20171605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, X., Zheng, J., Dong, Q., Huang, X. (2018). Speed-Up Algorithms for Happiness-Maximizing Representative Databases. In: U, L., Xie, H. (eds) Web and Big Data. APWeb-WAIM 2018. Lecture Notes in Computer Science(), vol 11268. Springer, Cham. https://doi.org/10.1007/978-3-030-01298-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01298-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01297-7

  • Online ISBN: 978-3-030-01298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics