Nothing Special   »   [go: up one dir, main page]

Skip to main content

Angle-Based Model for Interactive Dimensionality Reduction and Data Visualization

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2018)

Abstract

In recent times, an undeniable fact is that the amount of data available has increased dramatically due mainly to the advance of new technologies allowing for storage and communication of enormous volumes of information. In consequence, there is an important need for finding the relevant information within the raw data through the application of novel data visualization techniques that permit the correct manipulation of data. This issue has motivated the development of graphic forms for visually representing and analyzing high-dimensional data. Particularly, in this work, we propose a graphical approach, which, allows the combination of dimensionality reduction (DR) methods using an angle-based model, making the data visualization more intelligible. Such approach is designed for a readily use, so that the input parameters are interactively given by the user within a user-friendly environment. The proposed approach enables users (even those being non-experts) to intuitively select a particular DR method or perform a mixture of methods. The experimental results prove that the interactive manipulation enabled by the here-proposed model-due to its ability of displaying a variety of embedded spaces-makes the task of selecting a embedded space simpler and more adequately fitted for a specific need.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asuncion, A., Newman, D.: UCI machine learning repository. University of california, School of Information and Computer Science, Irvine, CA (2007). http://www.ics.uci.edu/~mlearn/MLRepository.html

  2. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  3. Borg, I.: Modern Multidimensional Scaling: Theory And Applications. Springer, New York (2005). https://doi.org/10.1007/0-387-28981-X

    Book  MATH  Google Scholar 

  4. Cook, J., Sutskever, I., Mnih, A., Hinton, G.: Visualizing similarity data with a mixture of maps. In: International Conference on Artificial Intelligence and Statistics, pp. 67–74 (2007)

    Google Scholar 

  5. Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A Kernel view of the dimensionality reduction of manifolds. In: Proceedings of the Twenty-First International Conference on Machine learning, p. 47. ACM (2004)

    Google Scholar 

  6. Lee, J.A., Renard, E., Bernard, G., Dupont, P., Verleysen, M.: Type 1 and 2 mixtures of Kullback-Leibler divergences as cost functions in dimensionality reduction based on similarity preservation. Neurocomputing 112, 92–108 (2013)

    Article  Google Scholar 

  7. Peluffo-Ordonez, D.H., Aldo Lee, J., Verleysen, M.: Generalized Kernel framework for unsupervised spectral methods of dimensionality reduction. In: 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 171–177. IEEE (2014)

    Google Scholar 

  8. Peluffo-Ordóñez, D.H., Castro-Ospina, A.E., Alvarado-Pérez, J.C., Revelo-Fuelagán, E.J.: Multiple Kernel learning for spectral dimensionality reduction. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. LNCS, vol. 9423, pp. 626–634. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25751-8_75

    Chapter  Google Scholar 

  9. Peluffo-Ordóñez, D.H., Lee, J.A., Verleysen, M.: Recent methods for dimensionality reduction: a brief comparative analysis. In: European Symposium on Artificial Neural Networks (ESANN). Citeseer (2014)

    Google Scholar 

  10. Peluffo-Ordóñez, D.H., Lee, J.A., Verleysen, M.: Short review of dimensionality reduction methods based on stochastic neighbour embedding. In: Villmann, T., Schleif, F.-M., Kaden, M., Lange, M. (eds.) Advances in Self-Organizing Maps and Learning Vector Quantization. AISC, vol. 295, pp. 65–74. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07695-9_6

    Chapter  Google Scholar 

  11. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  12. Sedlmair, M., Aupetit, M.: Data-driven evaluation of visual quality measures. Comput. Graph. Forum 34, 201–210 (2015)

    Article  Google Scholar 

  13. Sedlmair, M., Brehmer, M., Ingram, S., Munzner, T.: Dimensionality reduction in the wild: gaps and guidance. Department of Computer Science, University of British Columbia, Vancouver, BC, Canada, Technical report TR-2012-03 (2012)

    Google Scholar 

  14. Peña-Unigarro, D.F., et al.: Interactive data visualization using dimensionality reduction and dissimilarity-based representations. In: Yin, H., et al. (eds.) IDEAL 2017. LNCS, vol. 10585, pp. 461–469. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68935-7_50

    Chapter  Google Scholar 

  15. Rosero-Montalvo, P.D., Peña-Unigarro, D.F., Peluffo, D.H., Castro-Silva, J.A., Umaquinga, A., Rosero-Rosero, E.A.: Interactive visualization methodology of high-dimensional data with a color-based model for dimensionality reduction. Biomed. Appl. Based Nat. Artif. Comput. 10338, 289 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Smart Data Analysis Systems (SDAS) Research Group (http://sdas-group.com), as well as the “Grupo de Investigación en Ingeniería Eléctrica y Electrónica - GIIEE” from Universidad de Nariño. Also, the authors acknowledge to the research project: “Desarrollo de una metodología de visualización interactiva y eficaz de información en Big Data” supported by Agreement No. 18 November 1st, 2016 by VIPRI from Universidad de Nariño.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Ortega-Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basante-Villota, C.K. et al. (2018). Angle-Based Model for Interactive Dimensionality Reduction and Data Visualization. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science(), vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01132-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01131-4

  • Online ISBN: 978-3-030-01132-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics