Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fake News as We Feel It: Perception and Conceptualization of the Term “Fake News” in the Media

  • Conference paper
  • First Online:
Social Informatics (SocInfo 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11185))

Included in the following conference series:

Abstract

In this article, we quantitatively analyze how the term “fake news” is being shaped in news media in recent years. We study the perception and the conceptualization of this term in the traditional media using eight years of data collected from news outlets based in 20 countries. Our results not only corroborate previous indications of a high increase in the usage of the expression “fake news”, but also show contextual changes around this expression after the United States presidential election of 2016. Among other results, we found changes in the related vocabulary, in the mentioned entities, in the surrounding topics and in the contextual polarity around the term “fake news”, suggesting that this expression underwent a change in perception and conceptualization after 2016. These outcomes expand the understandings on the usage of the term “fake news”, helping to comprehend and more accurately characterize this relevant social phenomenon linked to misinformation and manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://trends.google.com/trends/.

  2. 2.

    https://github.com/Ejhfast/empath-client.

  3. 3.

    http://sentistrength.wlv.ac.uk/.

References

  1. Acerbi, A., Lampos, V., Garnett, P., Bentley, R.A.: The expression of emotions in 20th century books. PLOS ONE 8(3), e59030 (2013)

    Article  Google Scholar 

  2. Berger, G.: How the Internet impacts on international news: exploring paradoxes of the most global medium in a time of ‘hyperlocalism’. Int. Commun. Gaz. 71(5), 355–371 (2009)

    Article  Google Scholar 

  3. Bird, S., Loper, E., Klein, E.: Natural Language Processing with Python. O’Reilly Media Inc., Sebastopol (2009)

    MATH  Google Scholar 

  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  5. Cambraia, C.N.: Da lexicologia social a uma lexicologia sócio-histórica: caminhos possíveis. Revista de Estudos da Linguagem 21(1), 157–188 (2013)

    Article  Google Scholar 

  6. Collins Dictionary: Word of the year 2017 (2017). https://www.collinsdictionary.com/woty. Accessed 4 May 2018

  7. Davies, M.: Corpus of News on the Web (NOW): 3+ billion words from 20 countries, updated every day (2013). https://corpus.byu.edu/now/

  8. Davies, M.: Fake news (2017). https://corpus.byu.edu/now/help/fake-news.asp. Accessed 4 May 2018

  9. Fast, E., Chen, B., Bernstein, M.S.: Empath: understanding topic signals in large-scale text. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 4647–4657. ACM (2016)

    Google Scholar 

  10. Flaounas, I., et al.: Research methods in the age of digital journalism: massive-scale automated analysis of news-content - topics, style and gender. Digit. Journal. 1(1), 102–116 (2013). https://doi.org/10.1080/21670811.2012.714928

    Article  Google Scholar 

  11. Flaounas, I., Turchi, M., Ali, O., Fyson, N., De Bie, T., Mosdell, N., Lewis, J., Cristianini, N.: The structure of the EU mediasphere. PLOS ONE 5(12), e14243 (2010)

    Article  Google Scholar 

  12. Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books Ngram corpus. In: Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics (2011)

    Google Scholar 

  13. Koplenig, A.: The impact of lacking metadata for the measurement of cultural and linguistic change using the Google Ngram data sets - reconstructing the composition of the German corpus in times of WWII. Digit. Sch. Humanit. 32(1), 169–188 (2017). https://doi.org/10.1093/llc/fqv037

    Article  Google Scholar 

  14. Lansdall-Welfare, T., Sudhahar, S., Veltri, G.A., Cristianini, N.: On the coverage of science in the media: a big data study on the impact of the Fukushima disaster. In: 2014 IEEE International Conference on Big Data, pp. 60–66. IEEE (2014)

    Google Scholar 

  15. Leetaru, K.: Culturomics 2.0: Forecasting large-scale human behavior using global news media tone in time and space. First Monday 16(9) (2011). http://firstmonday.org/article/view/3663/3040

  16. Matoré, G.: La méthode en lexicologie: domaine français. Didier, Paris (1953)

    Google Scholar 

  17. Michel, J.B., et al.: Quantitative analysis of culture using millions of digitized books. Science 331(6014), 176–182 (2011)

    Article  Google Scholar 

  18. Newman, D., Lau, J.H., Grieser, K., Baldwin, T.: Automatic evaluation of topic coherence. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT 2010, pp. 100–108. Association for Computational Linguistics, Stroudsburg, PA, USA (2010). http://dl.acm.org/citation.cfm?id=1857999.1858011

  19. Pechenick, E.A., Danforth, C.M., Dodds, P.S.: Characterizing the Google Books corpus: strong limits to inferences of socio-cultural and linguistic evolution. PLOS ONE 10(10), e0137041 (2015)

    Article  Google Scholar 

  20. Petersen, A.M., Tenenbaum, J., Havlin, S., Stanley, H.E.: Statistical laws governing fluctuations in word use from word birth to word death. Sci. Rep. 2, Article number 313 (2012)

    Google Scholar 

  21. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, Malta, May 2010. http://is.muni.cz/publication/884893/en

  22. Roth, S.: Fashionable functions: a google ngram view of trends in functional differentiation (1800–2000). Int. J. Technol. Hum. Interact. 10(2), 34–58 (2014)

    Article  Google Scholar 

  23. Silva, N.F.F.D., Coletta, L.F.S., Hruschka, E.R.: A survey and comparative study of tweet sentiment analysis via semi-supervised learning. ACM Comput. Surv. 49(1), 15:1–15:26 (2016). https://doi.org/10.1145/2932708

    Article  Google Scholar 

  24. Standage, T.: The true history of fake news. 1843 Magazine (2017). https://bit.ly/2sh9OYQ. Accessed 4 May 2018

  25. Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment in short strength detection informal text. J. Am. Soc. Inf. Sci. Technol. 61(12), 2544–2558 (2010). https://doi.org/10.1002/asi.v61:12

    Article  Google Scholar 

  26. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003. Association for Computational Linguistics (2003)

    Google Scholar 

  27. Wynne, M.: Searching and concordancing. In: Corpus Linguistics. An International Handbook, vol. 1, pp. 706–737 (2008)

    Google Scholar 

  28. Zollo, F.: Emotional dynamics in the age of misinformation. PLOS ONE 10(9), 1–22 (2015). https://doi.org/10.1371/journal.pone.0138740

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evandro Cunha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cunha, E., Magno, G., Caetano, J., Teixeira, D., Almeida, V. (2018). Fake News as We Feel It: Perception and Conceptualization of the Term “Fake News” in the Media. In: Staab, S., Koltsova, O., Ignatov, D. (eds) Social Informatics. SocInfo 2018. Lecture Notes in Computer Science(), vol 11185. Springer, Cham. https://doi.org/10.1007/978-3-030-01129-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01129-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01128-4

  • Online ISBN: 978-3-030-01129-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics