Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Dynamic Optimization Approach to Adaptive Control for the Four-Bar Linkage Mechanism

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2018)

Abstract

In this work, a control strategy for the speed regulation of the four-bar linkage mechanism is presented. This strategy is based on the dynamic optimization approach to adaptive control. In this approach, a dynamic optimization problem is stated and solved on-line using an optimizer to find the best set of control parameters. A novel variant of the Differential Evolution optimizer with an optimum tracking mechanism which allows to maintain the diversity of solutions is proposed in order to handle the changing best solution of the dynamic optimization problem. A full statistical analysis is used to prove the effectiveness of the proposed strategy. The performance of this strategy is tested in simulation and is compared with a PI controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Niyetkaliyev, A.S., Hussain, S., Jamwal, P.K., Alici, G.: Modelling of the human shoulder girdle as a 6–4 parallel mechanism with a moving scapulothoracic joint. Mech. Mach. Theory 118(Supplement C), 219–230 (2017)

    Article  Google Scholar 

  2. Yang, Z., Wu, J., Mei, J., Gao, J., Huang, T.: Mechatronic model based computed torque control of a parallel manipulator. Int. J. Adv. Robot. Syst. 5(1), 14 (2008)

    Article  Google Scholar 

  3. Peng, Z., Liu, F., Yang, L.: Control based on double neural networks-pi for parallel mechanism. Robot. Comput.-Integr. Manuf. 26(3), 250–252 (2010). (product Design and Manufacturing Systems 07 on Advanced Robotics and Machine Design)

    Article  Google Scholar 

  4. Gündoğdu, Ö., Erentrk, K.: Fuzzy control of a dc motor driven four-bar mechanism. Mechatronics 15(4), 423–438 (2005)

    Article  Google Scholar 

  5. Villarreal-Cervantes, M.G., Alvarez-Gallegos, J.: Off-line pid control tuning for a planar parallel robot using de variants. Expert. Syst. Appl. 64(Supplement C), 444–454 (2016)

    Article  Google Scholar 

  6. Landau, I., Lozano, R., M’Saad, M.: Adaptive Control: Algorithms, Analysis and Applications. Springer Science+Business Media, New York, NY, USA (2011)

    Book  Google Scholar 

  7. Ming-chang, L., Jian-Shiang, C.: Experiments toward MRAC design for linkage system. Mechatronics 6(8), 933–953 (1996). [Online]. Available http://www.sciencedirect.com/science/article/pii/S0957415896000219

    Article  Google Scholar 

  8. Slotine, J.J.E., Weiping, L.: Adaptive manipulator control: a case study. IEEE Trans. Autom. Control. 33(11), 995–1003 (1988). Nov

    Article  Google Scholar 

  9. Rodríguez-Molina, A., Villarreal-Cervantes, M.G., Aldape-Pérez, M.: An adaptive control study for the DC motor using meta-heuristic algorithms. Soft Comput. 1–18 (2017)

    Google Scholar 

  10. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series). Springer-Verlag, New York Inc., Secaucus, NJ, USA (2005)

    MATH  Google Scholar 

  11. Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, C.A.: A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, ser. GECCO ’06 (2006)

    Google Scholar 

  12. Villarreal-Cervantes, M.G., Rodríguez-Molina, A., García-Mendoza, C.V., Peñaloza-Mejía, O., Sepúlveda-Cervantes, G.: Multi-objective on-line optimization approach for the dc motor controller tuning using differential evolution. IEEE Access 5, 20,393–20,407 (2017)

    Article  Google Scholar 

  13. Deb, K.: An efficient constraint handling method for genetic algorithms. In: Computer Methods in Applied Mechanics and Engineering, pp. 311–338 (2000)

    Article  Google Scholar 

  14. López-Ibánez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stútzle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  15. Rohlfshagen, P., Yao, X.: Evolutionary Dynamic Optimization: Challenges and Perspectives, pp. 65–84. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  16. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the support of the Secretaría de Investigación y Posgrado (SIP) under the projects SIP-20180196 and SIP-20180637, and the support of the Consejo Nacional de Ciencia y Tecnología (CONACyT) under the project A1-S-21628. The first author acknowledge support from the Mexican Consejo Nacional de Ciencia y Tecnología (CONACyT) through a scholarship to pursue graduate studies at CIDETEC-IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Rodríguez-Molina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodríguez-Molina, A., Villarreal-Cervantes, M.G., Aldape-Pérez, M. (2019). A Dynamic Optimization Approach to Adaptive Control for the Four-Bar Linkage Mechanism. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2018. Advances in Intelligent Systems and Computing, vol 869. Springer, Cham. https://doi.org/10.1007/978-3-030-01057-7_66

Download citation

Publish with us

Policies and ethics