Abstract
In this work, a control strategy for the speed regulation of the four-bar linkage mechanism is presented. This strategy is based on the dynamic optimization approach to adaptive control. In this approach, a dynamic optimization problem is stated and solved on-line using an optimizer to find the best set of control parameters. A novel variant of the Differential Evolution optimizer with an optimum tracking mechanism which allows to maintain the diversity of solutions is proposed in order to handle the changing best solution of the dynamic optimization problem. A full statistical analysis is used to prove the effectiveness of the proposed strategy. The performance of this strategy is tested in simulation and is compared with a PI controller.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Niyetkaliyev, A.S., Hussain, S., Jamwal, P.K., Alici, G.: Modelling of the human shoulder girdle as a 6–4 parallel mechanism with a moving scapulothoracic joint. Mech. Mach. Theory 118(Supplement C), 219–230 (2017)
Yang, Z., Wu, J., Mei, J., Gao, J., Huang, T.: Mechatronic model based computed torque control of a parallel manipulator. Int. J. Adv. Robot. Syst. 5(1), 14 (2008)
Peng, Z., Liu, F., Yang, L.: Control based on double neural networks-pi for parallel mechanism. Robot. Comput.-Integr. Manuf. 26(3), 250–252 (2010). (product Design and Manufacturing Systems 07 on Advanced Robotics and Machine Design)
Gündoğdu, Ö., Erentrk, K.: Fuzzy control of a dc motor driven four-bar mechanism. Mechatronics 15(4), 423–438 (2005)
Villarreal-Cervantes, M.G., Alvarez-Gallegos, J.: Off-line pid control tuning for a planar parallel robot using de variants. Expert. Syst. Appl. 64(Supplement C), 444–454 (2016)
Landau, I., Lozano, R., M’Saad, M.: Adaptive Control: Algorithms, Analysis and Applications. Springer Science+Business Media, New York, NY, USA (2011)
Ming-chang, L., Jian-Shiang, C.: Experiments toward MRAC design for linkage system. Mechatronics 6(8), 933–953 (1996). [Online]. Available http://www.sciencedirect.com/science/article/pii/S0957415896000219
Slotine, J.J.E., Weiping, L.: Adaptive manipulator control: a case study. IEEE Trans. Autom. Control. 33(11), 995–1003 (1988). Nov
Rodríguez-Molina, A., Villarreal-Cervantes, M.G., Aldape-Pérez, M.: An adaptive control study for the DC motor using meta-heuristic algorithms. Soft Comput. 1–18 (2017)
Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series). Springer-Verlag, New York Inc., Secaucus, NJ, USA (2005)
Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, C.A.: A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, ser. GECCO ’06 (2006)
Villarreal-Cervantes, M.G., Rodríguez-Molina, A., García-Mendoza, C.V., Peñaloza-Mejía, O., Sepúlveda-Cervantes, G.: Multi-objective on-line optimization approach for the dc motor controller tuning using differential evolution. IEEE Access 5, 20,393–20,407 (2017)
Deb, K.: An efficient constraint handling method for genetic algorithms. In: Computer Methods in Applied Mechanics and Engineering, pp. 311–338 (2000)
López-Ibánez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stútzle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)
Rohlfshagen, P., Yao, X.: Evolutionary Dynamic Optimization: Challenges and Perspectives, pp. 65–84. Springer, Berlin, Heidelberg (2013)
Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)
Acknowledgment
The authors acknowledge the support of the Secretaría de Investigación y Posgrado (SIP) under the projects SIP-20180196 and SIP-20180637, and the support of the Consejo Nacional de Ciencia y Tecnología (CONACyT) under the project A1-S-21628. The first author acknowledge support from the Mexican Consejo Nacional de Ciencia y Tecnología (CONACyT) through a scholarship to pursue graduate studies at CIDETEC-IPN.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Rodríguez-Molina, A., Villarreal-Cervantes, M.G., Aldape-Pérez, M. (2019). A Dynamic Optimization Approach to Adaptive Control for the Four-Bar Linkage Mechanism. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2018. Advances in Intelligent Systems and Computing, vol 869. Springer, Cham. https://doi.org/10.1007/978-3-030-01057-7_66
Download citation
DOI: https://doi.org/10.1007/978-3-030-01057-7_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01056-0
Online ISBN: 978-3-030-01057-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)