Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hierarchical Image Segmentation Based on Multi-feature Fusion and Graph Cut Optimization

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11165))

Included in the following conference series:

  • 2519 Accesses

Abstract

The task of hierarchical image segmentation attempts to parse images from coarse to fine and provides a structural configuration by the output of a tree-like structure. To deal with the challenges of keeping semantic consistency in each level caused by the variable scale of different objects in image, this paper proposes a hierarchical image segmentation approach guided by multi-feature fusion and energy optimization. We transform the image into a region adjacency graph (RAG) by superpixels and design a bottom-up progressive merging framework based on graph cut for a hierarchical region tree. A multiscale structural edge is designed as a feature map for mapping to the hierarchical levels, while we conduct salient map and object window as a weakly-supervised prior during the optimization process. Experimental results demonstrate that our approach gets a better performance in semantic consistency while has an encouraging performance compared with some state-of-the-arts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. Kim, T.H., Lee, K.M., Lee, S.U.: Learning full pairwise affinities for spectral segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1690–1703 (2013)

    Article  Google Scholar 

  3. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Trans. Image Process. 9(4), 561–576 (2000)

    Article  Google Scholar 

  4. Pont-Tuset, J., Arbelaez, P., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 128–140 (2016)

    Article  Google Scholar 

  5. Chen, Y., Dai, D., Pont-Tuset, J., Van Gool, L.: Scale-aware alignment of hierarchical image segmentation. In: Computer Vision and Pattern Recognition, pp. 364–372. IEEE (2016)

    Google Scholar 

  6. Achanta, R., Shaji, A., Smith, K.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  7. Lee, H., Jeon, J., Kim, J., Lee, S.: Structure-texture decomposition of images with interval gradient. Comput. Graph. Forum 36(6), 262–274 (2017)

    Article  Google Scholar 

  8. Dollar, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2015)

    Article  Google Scholar 

  9. Liu, T., Seyedhosseini, M., Tasdizen, T.: Image segmentation using hierarchical merge tree. IEEE Trans. Image Process. 25(10), 4596–4607 (2016)

    Article  MathSciNet  Google Scholar 

  10. Kim, J., Han, D., Tai, Y.-W., Kim, J.: Salient region detection via high-dimensional color transform. In: Computer Vision and Pattern Recognition, pp. 883–890. IEEE (2014)

    Google Scholar 

  11. Ren, S., He, K., Girshick, R.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  12. Boykov, Y.Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: International Conference on Computer Vision, p. 105. IEEE (2001)

    Google Scholar 

  13. Isola, P., Zoran, D., Krishnan, D., Adelson, E.H.: Crisp boundary detection using pointwise mutual information. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 799–814. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_52

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by National High Technology Re-search and Development Program of China (No. 2007AA01Z334), National Natural Science Foundation of China (Nos. 61321491 and 61272219), Program for New Century Excellent Talents in University of China (NCET-04-04605), the China Postdoctoral Science Foundation (Grant No. 2017M621700) and Innovation Fund of State Key Lab for Novel Software Technology (Nos. ZZKT2013A12, ZZKT2016A11 and ZZKT2018A09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengxing Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, A., Sun, Z., Guo, Y., Li, Q. (2018). Hierarchical Image Segmentation Based on Multi-feature Fusion and Graph Cut Optimization. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11165. Springer, Cham. https://doi.org/10.1007/978-3-030-00767-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00767-6_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00766-9

  • Online ISBN: 978-3-030-00767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics