Nothing Special   »   [go: up one dir, main page]

Skip to main content

Super-Resolution of Text Image Based on Conditional Generative Adversarial Network

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11166))

Included in the following conference series:

Abstract

To generate high-resolution text images from available low-resolution ones is of great value to many text-related applications, especially text recognition. In this paper, we propose an effective super-resolution method for text images based on Conditional Generative Adversarial Network (cGAN). Specifically, we improve the cGAN model by removing the Batch Normalization layers and introducing the Inception structure to make it more suited to the text image super-resolution task, which contribute to the overall enhanced performances of the proposed method relative to the original cGAN model. Experiment results on public dataset demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR 2004, pp. 275–282 (2004)

    Google Scholar 

  2. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  3. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-Based Super-Resolution. IEEE Computer Society Press, Washington, D.C. (2002)

    Google Scholar 

  4. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS. pp. 2672–2680 (2014)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR 2016, pp. 770–778 (2016)

    Google Scholar 

  6. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR 2017, pp. 5967–5976 (2017)

    Google Scholar 

  7. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  8. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: CVPR 2016, pp. 1646–1654 (2016)

    Google Scholar 

  9. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: CVPR 2016, pp. 1637–1645 (2016)

    Google Scholar 

  10. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. PAMI 32(6), 1127–33 (2010)

    Article  Google Scholar 

  11. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR 2017, pp. 105–114 (2017)

    Google Scholar 

  12. Moghaddam, R.F., Cheriet, M.: A multi-scale framework for adaptive binarization of degraded document images. Pattern Recognit. 43(6), 2186–2198 (2010)

    Article  Google Scholar 

  13. Peyrard, C., Baccouche, M., Mamalet, F., Garcia, C.: ICDAR2015 competition on text image super-resolution. In: ICDAR 2015, pp. 1201–1205 (2015)

    Google Scholar 

  14. Peyrard, C., Mamalet, F., Garcia, C.: A comparison between multi-layer perceptrons and convolutional neural networks for text image super-resolution. In: VISAPP, pp. 84–91 (2016)

    Google Scholar 

  15. Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with super-resolution forests. In: CVPR 2015, pp. 3791–3799 (2015)

    Google Scholar 

  16. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR 2015, pp. 1–9 (2015)

    Google Scholar 

  17. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Chapter  Google Scholar 

  18. Walha, R., Drira, F., Lebourgeois, F., Garcia, C., Alimi, A.M.: Resolution enhancement of textual images via multiple coupled dictionaries and adaptive sparse representation selection. Int. J. Doc. Anal. Recognit. 18(1), 87–107 (2015)

    Article  Google Scholar 

  19. Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: ICCV 2015, pp. 370–378 (2015)

    Google Scholar 

  20. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  21. Yang, C.Y., Yang, M.H.: Fast direct super-resolution by simple functions. In: ICCV 2013, pp. 561–568 (2013)

    Google Scholar 

  22. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

Download references

Acknowledgments

Research supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20171345 and the National Natural Science Foundation of China under Grant Nos. 61003113, 61321491, 61672273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Ding, W., Su, F. (2018). Super-Resolution of Text Image Based on Conditional Generative Adversarial Network. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00764-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00763-8

  • Online ISBN: 978-3-030-00764-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics