Abstract
To generate high-resolution text images from available low-resolution ones is of great value to many text-related applications, especially text recognition. In this paper, we propose an effective super-resolution method for text images based on Conditional Generative Adversarial Network (cGAN). Specifically, we improve the cGAN model by removing the Batch Normalization layers and introducing the Inception structure to make it more suited to the text image super-resolution task, which contribute to the overall enhanced performances of the proposed method relative to the original cGAN model. Experiment results on public dataset demonstrate the effectiveness of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR 2004, pp. 275–282 (2004)
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13
Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-Based Super-Resolution. IEEE Computer Society Press, Washington, D.C. (2002)
Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS. pp. 2672–2680 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR 2016, pp. 770–778 (2016)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR 2017, pp. 5967–5976 (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: CVPR 2016, pp. 1646–1654 (2016)
Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: CVPR 2016, pp. 1637–1645 (2016)
Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. PAMI 32(6), 1127–33 (2010)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR 2017, pp. 105–114 (2017)
Moghaddam, R.F., Cheriet, M.: A multi-scale framework for adaptive binarization of degraded document images. Pattern Recognit. 43(6), 2186–2198 (2010)
Peyrard, C., Baccouche, M., Mamalet, F., Garcia, C.: ICDAR2015 competition on text image super-resolution. In: ICDAR 2015, pp. 1201–1205 (2015)
Peyrard, C., Mamalet, F., Garcia, C.: A comparison between multi-layer perceptrons and convolutional neural networks for text image super-resolution. In: VISAPP, pp. 84–91 (2016)
Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with super-resolution forests. In: CVPR 2015, pp. 3791–3799 (2015)
Szegedy, C., et al.: Going deeper with convolutions. In: CVPR 2015, pp. 1–9 (2015)
Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8
Walha, R., Drira, F., Lebourgeois, F., Garcia, C., Alimi, A.M.: Resolution enhancement of textual images via multiple coupled dictionaries and adaptive sparse representation selection. Int. J. Doc. Anal. Recognit. 18(1), 87–107 (2015)
Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: ICCV 2015, pp. 370–378 (2015)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Yang, C.Y., Yang, M.H.: Fast direct super-resolution by simple functions. In: ICCV 2013, pp. 561–568 (2013)
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47
Acknowledgments
Research supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20171345 and the National Natural Science Foundation of China under Grant Nos. 61003113, 61321491, 61672273.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Ding, W., Su, F. (2018). Super-Resolution of Text Image Based on Conditional Generative Adversarial Network. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-00764-5_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00763-8
Online ISBN: 978-3-030-00764-5
eBook Packages: Computer ScienceComputer Science (R0)