Nothing Special   »   [go: up one dir, main page]

Skip to main content

Level-Set Based Algorithm for Automatic Feature Extraction on 3D Meshes: Application to Crater Detection on Mars

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11114))

Included in the following conference series:

Abstract

The knowledge of the origin and development of all bodies in the solar system begins with understanding the geologic history and evolution of the universe. The only approach for dating celestial body surfaces is by the analysis of the crater impact density and size. In order to facilitate this process, automatic approaches have been proposed for the impact craters detection. In this article, we propose a novel approach for detecting craters’ rims. The developed method is based on a study of the Digital Elevation Model (DEM) geometry, represented as a 3D triangulated mesh. We use curvature analysis, in combination with a fast local quantization method to automatically detect the craters’ rims with artificial neural network. The validation of the method is performed on Barlow’s database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bandeira, L., Ding, W., Stepinski, T.: Detection of sub-kilometer craters in high resolution planetary images using shape and texture features. Adv. Space Res. 49(1), 64–74 (2012)

    Article  Google Scholar 

  2. Barlow, N.G.: Crater size-frequency distributions and a revised Martian relative chronology. Icarus 75(2), 285–305 (1988)

    Article  Google Scholar 

  3. Bue, B., Stepinski, T.F.: Machine detection of martian impact craters from digital topography data. IEEE Trans. Geosci. Remote Sens. 45(1), 265–274 (2007)

    Article  Google Scholar 

  4. Christoff, N., Manolova, A., Jorda, L., Mari, J.-L.: Feature extraction and automatic detection of Martian impact craters from 3D meshes. In: 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), 18–20 October 2017, Nis, Serbia, pp. 211–214 (2017)

    Google Scholar 

  5. De Croon, G.C.H.E., Izzo, D., Schiavone, G.: Time-to-contact estimation in landing scenarios using feature scales. Acta Futura 5, 73–82 (2012)

    Google Scholar 

  6. Di, K., Li, W., Yue, Z., Sun, Y., Liu, Y.: A machine learning approach to crater detection from topographic data. Advances in Space Research 54(11), 2419–2429 (2014)

    Article  Google Scholar 

  7. Stenzel, O.: Gradient index films and multilayers. The Physics of Thin Film Optical Spectra. SSSS, vol. 44, pp. 163–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21602-7_8

    Chapter  Google Scholar 

  8. Jin, S., Zhang, T.: The automatic detection of impact craters on Mars using a modified adaboosting method. Planet. Space Sci. 99, 112–117 (2014)

    Article  Google Scholar 

  9. Kanan, C., Cottrell, G.: Color-to-grayscale: does the method matter in image recognition? PLOS ONE 7(1), e29740 (2012)

    Article  Google Scholar 

  10. Kasabov, N.: Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, pp. 257–340. The MIT Press, Cambridge (1996)

    Google Scholar 

  11. Kim, J.R., Muller, J.P., van Gasselt, S., Morley, J.G., Neukum, G.: Automated crater detection, a new tool for Mars cartography and chronology. Photogram. Eng. Remote Sens. 71(10), 1205–1217 (2005)

    Article  Google Scholar 

  12. Malin, M., Bell, J., Cantor, B., Caplinger, M., Calvin, W., Clancy, R.T., Edgett, K., Edwards, L., Haberle, R., James, F., Lee, S., Ravine, M., Thomas, P., Wolff, M.: Context camera investigation on board the Mars reconnaissance orbiter. J. Geophys. Res. E Planets 112, E05S04 (2007)

    Article  Google Scholar 

  13. Neukum, G., Konig, B., Fechtig, H., Storzer, D.: Cratering in the earth-moon system-consequences for age determination by crater counting. In: Proceedings Lunar Science Conference, 6th, Houston, vol. 3, pp. 2597–2620 (1975)

    Google Scholar 

  14. Meng, D., Yunfeng, C., Qingxian, W.: Novel approach of crater detection by crater candidate region selection and matrix-pattern-oriented least squares support vector machine. Chin. J. Aeronaut. 26(2), 385–393 (2013)

    Article  Google Scholar 

  15. Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4), 525–533 (1993)

    Article  Google Scholar 

  16. Pedersen, S. J. K.: Circular Hough Transform. In: Aalborg University, Vision, Graphics, and Interactive Systems (2007)

    Google Scholar 

  17. Ponti, M., Nazaré, T., Thumé, G.: Image quantization as a dimensionality reduction procedure in color and texture feature extraction. Neurocomputing 173(2), 385–396 (2016)

    Article  Google Scholar 

  18. Rodionova, J.F., Dekchtyareva, K.I., Khramchikhin, A.A., Michael, G.G., Ajukov, S.V., Pugacheva, S.G., Shevchenko, V.V.: Morphological Catalogue of the Craters of Mars (2000). Shevchenko, V.V., Chicarro, A.F. (eds.)

    Google Scholar 

  19. Rees, D.G.: Foundations of Statistics, pp. 244–249. CRC Press, Boca Raton (1987)

    Google Scholar 

  20. Robbins, S., Hynek, B.: A new global database of Mars impact craters \(geq\) 1 km: Database creation, properties, and parameters. J. Geophys. Res. 117(E6) (2012)

    Article  Google Scholar 

  21. Salamunićcar, G., Lončarić, S.: Open framework for objective evaluation of crater detectionalgorithms with first test-field subsystem based on MOLA data. Adv. Space Res. 42(2008), 6–19 (2008)

    Article  Google Scholar 

  22. Salamunićcar, G., Lončarić, S.: Application of machine learning using support vector machines for crater detection from Martian digital topography data. In: 38th COSPAR Scientific Assembly, 18–15 July 2010, in Bremen, Germany, p. 3 (2010)

    Google Scholar 

  23. Salamunićcar, G., Lončarić, S., Mazarico, E.: LU60645GT and MA132843GT catalogues of Lunar and Martian impact craters developed using a crater shape-based interpolation crater detection algorithm for topography data. Planet. Space Sci. 60(1), 236–247 (2012)

    Article  Google Scholar 

  24. Schmidt, M.P., Muscato, J., Viseur, S., Jorda, L., Bouley, S., Mari, J.-L.: Robust detection of round shaped pits lying on 3D meshes application to impact crater recognition. In: EGU General Assembly 2015, vol. 17 (EGU2015), p. 7628 (2015)

    Google Scholar 

  25. Shufelt, J.A.: Performance evaluation and analysis of monocular building extraction from aerial imagery. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 311–326 (1999)

    Article  Google Scholar 

  26. Stepinski, T.F., Ding, W., Vilalta, R.: Detecting impact craters in planetary images using machine learning. In: Intelligent Data Analysis for Real-Life Applications: Theory and Practice, pp. 146–159. IGI Global (2012)

    Google Scholar 

  27. Szabo, T., Domokos, G., Grotzinger, J.P., Jerolmack, D.J.: Reconstructing the transport history of pebbles on Mars. In: Nature Communications, vol. 6, p. 8366 (2015)

    Google Scholar 

  28. Urbach, E.R., Stepinski, T.F.: Automatic detection of sub-km craters in high resolution planetary images. Planet. Space Sci. 57(7), 880–887 (2009)

    Article  Google Scholar 

  29. Wang, Y., Yang, G., Guo, L.: A novel sparse boosting method for crater detection in the high resolution planetary image. Adv. Space Res. 56(5), 982–991 (2015)

    Article  Google Scholar 

  30. Zuber, M.T., Smith, D.E., Solomon, S.C., Muhleman, D.O., Head, J.W., Garvin, J.B., Abshire, J.B., Bufton, J.L.: The Mars observer laser altimeter investigation. J. Geophys. Res. Planets 97(E5), 7781–7797 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Christoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Christoff, N., Manolova, A., Jorda, L., Viseur, S., Bouley, S., Mari, JL. (2018). Level-Set Based Algorithm for Automatic Feature Extraction on 3D Meshes: Application to Crater Detection on Mars. In: Chmielewski, L., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A., Petkov, N. (eds) Computer Vision and Graphics. ICCVG 2018. Lecture Notes in Computer Science(), vol 11114. Springer, Cham. https://doi.org/10.1007/978-3-030-00692-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00692-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00691-4

  • Online ISBN: 978-3-030-00692-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics