Abstract
The knowledge of the origin and development of all bodies in the solar system begins with understanding the geologic history and evolution of the universe. The only approach for dating celestial body surfaces is by the analysis of the crater impact density and size. In order to facilitate this process, automatic approaches have been proposed for the impact craters detection. In this article, we propose a novel approach for detecting craters’ rims. The developed method is based on a study of the Digital Elevation Model (DEM) geometry, represented as a 3D triangulated mesh. We use curvature analysis, in combination with a fast local quantization method to automatically detect the craters’ rims with artificial neural network. The validation of the method is performed on Barlow’s database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bandeira, L., Ding, W., Stepinski, T.: Detection of sub-kilometer craters in high resolution planetary images using shape and texture features. Adv. Space Res. 49(1), 64–74 (2012)
Barlow, N.G.: Crater size-frequency distributions and a revised Martian relative chronology. Icarus 75(2), 285–305 (1988)
Bue, B., Stepinski, T.F.: Machine detection of martian impact craters from digital topography data. IEEE Trans. Geosci. Remote Sens. 45(1), 265–274 (2007)
Christoff, N., Manolova, A., Jorda, L., Mari, J.-L.: Feature extraction and automatic detection of Martian impact craters from 3D meshes. In: 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), 18–20 October 2017, Nis, Serbia, pp. 211–214 (2017)
De Croon, G.C.H.E., Izzo, D., Schiavone, G.: Time-to-contact estimation in landing scenarios using feature scales. Acta Futura 5, 73–82 (2012)
Di, K., Li, W., Yue, Z., Sun, Y., Liu, Y.: A machine learning approach to crater detection from topographic data. Advances in Space Research 54(11), 2419–2429 (2014)
Stenzel, O.: Gradient index films and multilayers. The Physics of Thin Film Optical Spectra. SSSS, vol. 44, pp. 163–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21602-7_8
Jin, S., Zhang, T.: The automatic detection of impact craters on Mars using a modified adaboosting method. Planet. Space Sci. 99, 112–117 (2014)
Kanan, C., Cottrell, G.: Color-to-grayscale: does the method matter in image recognition? PLOS ONE 7(1), e29740 (2012)
Kasabov, N.: Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, pp. 257–340. The MIT Press, Cambridge (1996)
Kim, J.R., Muller, J.P., van Gasselt, S., Morley, J.G., Neukum, G.: Automated crater detection, a new tool for Mars cartography and chronology. Photogram. Eng. Remote Sens. 71(10), 1205–1217 (2005)
Malin, M., Bell, J., Cantor, B., Caplinger, M., Calvin, W., Clancy, R.T., Edgett, K., Edwards, L., Haberle, R., James, F., Lee, S., Ravine, M., Thomas, P., Wolff, M.: Context camera investigation on board the Mars reconnaissance orbiter. J. Geophys. Res. E Planets 112, E05S04 (2007)
Neukum, G., Konig, B., Fechtig, H., Storzer, D.: Cratering in the earth-moon system-consequences for age determination by crater counting. In: Proceedings Lunar Science Conference, 6th, Houston, vol. 3, pp. 2597–2620 (1975)
Meng, D., Yunfeng, C., Qingxian, W.: Novel approach of crater detection by crater candidate region selection and matrix-pattern-oriented least squares support vector machine. Chin. J. Aeronaut. 26(2), 385–393 (2013)
Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4), 525–533 (1993)
Pedersen, S. J. K.: Circular Hough Transform. In: Aalborg University, Vision, Graphics, and Interactive Systems (2007)
Ponti, M., Nazaré, T., Thumé, G.: Image quantization as a dimensionality reduction procedure in color and texture feature extraction. Neurocomputing 173(2), 385–396 (2016)
Rodionova, J.F., Dekchtyareva, K.I., Khramchikhin, A.A., Michael, G.G., Ajukov, S.V., Pugacheva, S.G., Shevchenko, V.V.: Morphological Catalogue of the Craters of Mars (2000). Shevchenko, V.V., Chicarro, A.F. (eds.)
Rees, D.G.: Foundations of Statistics, pp. 244–249. CRC Press, Boca Raton (1987)
Robbins, S., Hynek, B.: A new global database of Mars impact craters \(geq\) 1 km: Database creation, properties, and parameters. J. Geophys. Res. 117(E6) (2012)
Salamunićcar, G., Lončarić, S.: Open framework for objective evaluation of crater detectionalgorithms with first test-field subsystem based on MOLA data. Adv. Space Res. 42(2008), 6–19 (2008)
Salamunićcar, G., Lončarić, S.: Application of machine learning using support vector machines for crater detection from Martian digital topography data. In: 38th COSPAR Scientific Assembly, 18–15 July 2010, in Bremen, Germany, p. 3 (2010)
Salamunićcar, G., Lončarić, S., Mazarico, E.: LU60645GT and MA132843GT catalogues of Lunar and Martian impact craters developed using a crater shape-based interpolation crater detection algorithm for topography data. Planet. Space Sci. 60(1), 236–247 (2012)
Schmidt, M.P., Muscato, J., Viseur, S., Jorda, L., Bouley, S., Mari, J.-L.: Robust detection of round shaped pits lying on 3D meshes application to impact crater recognition. In: EGU General Assembly 2015, vol. 17 (EGU2015), p. 7628 (2015)
Shufelt, J.A.: Performance evaluation and analysis of monocular building extraction from aerial imagery. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 311–326 (1999)
Stepinski, T.F., Ding, W., Vilalta, R.: Detecting impact craters in planetary images using machine learning. In: Intelligent Data Analysis for Real-Life Applications: Theory and Practice, pp. 146–159. IGI Global (2012)
Szabo, T., Domokos, G., Grotzinger, J.P., Jerolmack, D.J.: Reconstructing the transport history of pebbles on Mars. In: Nature Communications, vol. 6, p. 8366 (2015)
Urbach, E.R., Stepinski, T.F.: Automatic detection of sub-km craters in high resolution planetary images. Planet. Space Sci. 57(7), 880–887 (2009)
Wang, Y., Yang, G., Guo, L.: A novel sparse boosting method for crater detection in the high resolution planetary image. Adv. Space Res. 56(5), 982–991 (2015)
Zuber, M.T., Smith, D.E., Solomon, S.C., Muhleman, D.O., Head, J.W., Garvin, J.B., Abshire, J.B., Bufton, J.L.: The Mars observer laser altimeter investigation. J. Geophys. Res. Planets 97(E5), 7781–7797 (1992)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Christoff, N., Manolova, A., Jorda, L., Viseur, S., Bouley, S., Mari, JL. (2018). Level-Set Based Algorithm for Automatic Feature Extraction on 3D Meshes: Application to Crater Detection on Mars. In: Chmielewski, L., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A., Petkov, N. (eds) Computer Vision and Graphics. ICCVG 2018. Lecture Notes in Computer Science(), vol 11114. Springer, Cham. https://doi.org/10.1007/978-3-030-00692-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-00692-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00691-4
Online ISBN: 978-3-030-00692-1
eBook Packages: Computer ScienceComputer Science (R0)