Abstract
Sparse representation-based visual tracking methods do not adapt well to changes in the target and backgrounds, and the sparseness of samples does not guarantee optimality. In this paper, we propose a robust visual tracking algorithm using sparse multi-feature selection and adaptive dictionary update based on weight dictionaries. We exploit the color features and texture features of the learning samples to obtain different discriminative dictionaries based on the label consistent K-SVD algorithm, and use the position information of those samples to assign weights to the dictionaries’ base vectors, forming the weight dictionaries. For robust visual tracking, we adopt a novel feature selection strategy that combines the weights of dictionaries’ base vectors and reconstruction errors to select the best sample. In addition, we introduce adaptive noise energy thresholds and establish a dictionary updating mechanism based on noise energy analysis, which effectively reduces the error accumulation caused by dictionary updating and enhances the adaptability to target and background changes. Comparison experiments show that the proposed algorithm performs favorably against several state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lu, H., Jia, X., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1822–1829. IEEE (2012)
Ross, D.A., Lim, J., Lin, R.S., et al.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. (IJCV) 77(1–3), 125–141 (2008)
Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated proximal gradient approach. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1830–1837 (2012)
Liu, Q.: Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset. J. Electron. Imaging 26(6), 1 (2017)
Zhang, K., Zhang, L., Yang, M.H.: Real-time compressive tracking. In: Computer Vision (ECCV), pp. 864–877 (2012)
Dinh, T.B., Vo, N., Medioni, G.: Context tracker: Exploring supporters and distracters in unconstrained environments. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1177–1184. IEEE (2011)
Grabner, H., Bischof, H.: On-line boosting and vision. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 260–267 (2006)
Ling, H.: Online robust image alignment via iterative convex optimization. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1808–1814. IEEE (2012)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)
Henriques, J.F., Rui, C., Martins, P., et al.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2014)
Danelljan, M., Häger, G., Khan, F.S., et al.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, pp. 65.1–65.11 (2014)
Danelljan, M., Hager, G., Khan, F.S., et al.: Learning spatially regularized correlation filters for visual tracking. In: Proceedings of International Conference on Computer Vision (ICCV), et al, pp. 4310–4318. IEEE Computer Society (2015)
Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 4800–4808. Honolulu, Hawaii (2017)
Bertinetto, L., Valmadre, J., Henriques, J.F., et al.: Fully-convolutional siamese networks for object tracking. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 850–865. Springer, Cham (2016)
Choi, J., Chang, H.J., Yun, S., et al.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 4828–4837. IEEE (2017)
Wang, N., Li, S., Gupta, A., et al.: Transferring rich feature hierarchies for robust visual tracking. Comput. Sci. (2015)
Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 4293–4302, IEEE (2016)
Jiang, Z., Lin, Z., Davis, L.S.: Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2651–2664 (2013)
Jin, Z., Su, Z., Wu, H., et al.: Robust tracking via discriminative sparse feature selection. Vis. Comput. 31(5), 575–588 (2015)
Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: International Conference on Image Processing, vol. 1, pp. I-900–I-903. IEEE (2002)
Wu, Y., Lim, J., Yang, M.H.: Object Tracking Benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)
Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_18
Bertinetto, L., Valmadre, J., Golodetz, S., et al.: Staple: complementary learners for real-time tracking. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1401–1409. IEEE (2016)
Qiao, T., Yang, Z., Ren, J., et al.: Joint bilateral filtering and spectral similarity-based sparse representation: a generic framework for effective feature extraction and data classification in hyperspectral imaging. Pattern Recognit. (2017)
Ren, J., Orwell, J., Jones, G.A., et al.: Tracking the soccer ball using multiple fixed cameras. Comput. Vis. Image Underst. 113(5), 633–642 (2009)
Acknowledgment
This research is supported by National Natural Science Foundation of China (61772144, 61672008), Innovation Research Project of Education Department of Guangdong Province (Natural Science) (2016KTSCX077), Foreign Science and Technology Cooperation Plan Project of Guangzhou Science Technology and Innovation Commission (201807010059), Guangdong Provincial Application-oriented Technical Research and Development Special Fund Project (2016B010127006), the Natural Science Foundation of Guangdong Province (2016A030311013), and the Scientific and Technological Projects of Guangdong Province (2017A050501039). The corresponding authors are Jin Zhan and Huimin Zhao.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Zheng, P., Zhan, J., Zhao, H., Wu, H. (2018). Robust Visual Tracking via Sparse Feature Selection and Weight Dictionary Update. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_47
Download citation
DOI: https://doi.org/10.1007/978-3-030-00563-4_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00562-7
Online ISBN: 978-3-030-00563-4
eBook Packages: Computer ScienceComputer Science (R0)