Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robust Visual Tracking via Sparse Feature Selection and Weight Dictionary Update

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Included in the following conference series:

  • 2573 Accesses

Abstract

Sparse representation-based visual tracking methods do not adapt well to changes in the target and backgrounds, and the sparseness of samples does not guarantee optimality. In this paper, we propose a robust visual tracking algorithm using sparse multi-feature selection and adaptive dictionary update based on weight dictionaries. We exploit the color features and texture features of the learning samples to obtain different discriminative dictionaries based on the label consistent K-SVD algorithm, and use the position information of those samples to assign weights to the dictionaries’ base vectors, forming the weight dictionaries. For robust visual tracking, we adopt a novel feature selection strategy that combines the weights of dictionaries’ base vectors and reconstruction errors to select the best sample. In addition, we introduce adaptive noise energy thresholds and establish a dictionary updating mechanism based on noise energy analysis, which effectively reduces the error accumulation caused by dictionary updating and enhances the adaptability to target and background changes. Comparison experiments show that the proposed algorithm performs favorably against several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu, H., Jia, X., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1822–1829. IEEE (2012)

    Google Scholar 

  2. Ross, D.A., Lim, J., Lin, R.S., et al.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. (IJCV) 77(1–3), 125–141 (2008)

    Article  Google Scholar 

  3. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated proximal gradient approach. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1830–1837 (2012)

    Google Scholar 

  4. Liu, Q.: Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset. J. Electron. Imaging 26(6), 1 (2017)

    Google Scholar 

  5. Zhang, K., Zhang, L., Yang, M.H.: Real-time compressive tracking. In: Computer Vision (ECCV), pp. 864–877 (2012)

    Chapter  Google Scholar 

  6. Dinh, T.B., Vo, N., Medioni, G.: Context tracker: Exploring supporters and distracters in unconstrained environments. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1177–1184. IEEE (2011)

    Google Scholar 

  7. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 260–267 (2006)

    Google Scholar 

  8. Ling, H.: Online robust image alignment via iterative convex optimization. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1808–1814. IEEE (2012)

    Google Scholar 

  9. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  10. Henriques, J.F., Rui, C., Martins, P., et al.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2014)

    Article  Google Scholar 

  11. Danelljan, M., Häger, G., Khan, F.S., et al.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, pp. 65.1–65.11 (2014)

    Google Scholar 

  12. Danelljan, M., Hager, G., Khan, F.S., et al.: Learning spatially regularized correlation filters for visual tracking. In: Proceedings of International Conference on Computer Vision (ICCV), et al, pp. 4310–4318. IEEE Computer Society (2015)

    Google Scholar 

  13. Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 4800–4808. Honolulu, Hawaii (2017)

    Google Scholar 

  14. Bertinetto, L., Valmadre, J., Henriques, J.F., et al.: Fully-convolutional siamese networks for object tracking. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 850–865. Springer, Cham (2016)

    Google Scholar 

  15. Choi, J., Chang, H.J., Yun, S., et al.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 4828–4837. IEEE (2017)

    Google Scholar 

  16. Wang, N., Li, S., Gupta, A., et al.: Transferring rich feature hierarchies for robust visual tracking. Comput. Sci. (2015)

    Google Scholar 

  17. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 4293–4302, IEEE (2016)

    Google Scholar 

  18. Jiang, Z., Lin, Z., Davis, L.S.: Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2651–2664 (2013)

    Article  Google Scholar 

  19. Jin, Z., Su, Z., Wu, H., et al.: Robust tracking via discriminative sparse feature selection. Vis. Comput. 31(5), 575–588 (2015)

    Article  Google Scholar 

  20. Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: International Conference on Image Processing, vol. 1, pp. I-900–I-903. IEEE (2002)

    Google Scholar 

  21. Wu, Y., Lim, J., Yang, M.H.: Object Tracking Benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  22. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_18

    Chapter  Google Scholar 

  23. Bertinetto, L., Valmadre, J., Golodetz, S., et al.: Staple: complementary learners for real-time tracking. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1401–1409. IEEE (2016)

    Google Scholar 

  24. Qiao, T., Yang, Z., Ren, J., et al.: Joint bilateral filtering and spectral similarity-based sparse representation: a generic framework for effective feature extraction and data classification in hyperspectral imaging. Pattern Recognit. (2017)

    Google Scholar 

  25. Ren, J., Orwell, J., Jones, G.A., et al.: Tracking the soccer ball using multiple fixed cameras. Comput. Vis. Image Underst. 113(5), 633–642 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by National Natural Science Foundation of China (61772144, 61672008), Innovation Research Project of Education Department of Guangdong Province (Natural Science) (2016KTSCX077), Foreign Science and Technology Cooperation Plan Project of Guangzhou Science Technology and Innovation Commission (201807010059), Guangdong Provincial Application-oriented Technical Research and Development Special Fund Project (2016B010127006), the Natural Science Foundation of Guangdong Province (2016A030311013), and the Scientific and Technological Projects of Guangdong Province (2017A050501039). The corresponding authors are Jin Zhan and Huimin Zhao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, P., Zhan, J., Zhao, H., Wu, H. (2018). Robust Visual Tracking via Sparse Feature Selection and Weight Dictionary Update. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics