Abstract
This document shows a neuro-fuzzy control system to regulate the velocity of a permanent magnet synchronous generator. This scheme comes up with two neuro-fuzzy systems where the first identifies the dynamics of the plant; the second is employed for control purposes. Subsequently, the performed training is examined to different reference values.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dugan, R., McDermott, T., Ball, G.: Planning for distributed generation. IEEE Ind. Appl. Mag. 7, 80–88 (2001)
Piagi, P., Lasseter, R.: Microgrid: a conceptual solution. In: Proceedings of the Power Electronics Specialists Conference, vol. 6, pp. 4285–4290 (2004)
Chen, J., Wu, H., Sun, M., Jiang, W., Cai, L., Guo, C.: Modeling and simulation of directly driven wind turbine with permanent magnet synchronous generator. In: IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia) (2012)
Patil, k., Mehta, B.: Modeling and simulation of variable speed wind turbine with direct drive permanent magnet synchronous generator. In: International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE) (2014)
Nguyen, H., Prasad, N., Walker, C., Walker, E.: A First Course in Fuzzy and Neural Control. Chapman & Hall/CRC, London (2003)
Espitia, H., González, G.: Identification of a permanent magnet synchronous generator using neuronal networks. In: IEEE Workshop on Engineering Applications (WEA), pp. 1–5 (2015)
Patil, K., Mehta, B.: Modeling and control of variable speed wind turbine with permanent magnet synchronous generator. In: International Conference on Advances in Green Energy (ICAGE), 17–18 December 2014 (2014)
Yin, M., Li, G., Zhou, M., Zhao, C.: Modeling of the wind turbine with a permanent magnet synchronous generator for integration. In: IEEE Power Engineering Society General Meeting, pp. 1–6 (2007)
Li, Y., Zhao, X., Jiao, L.: A nonlinear system identification approach based on neuro-fuzzy Networks. In: Proceedings of ICSP (2000)
Morales, L.: Estudio y evaluación del método de defuzificación basado en relaciones booleanas (DBR) aplicado a las redes neuro-difusas, para la identificación de sistemas no lineales. Proyecto de grado en Ingeniería Electrónica, Universidad Distrital Francisco José de Caldas (2009)
Wang, L.: A Course in Fuzzy Systems and Control. Prentice Hall, Englewood Cliffs (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Espitia, H., Díaz, G., Díaz, S. (2018). Control of a Permanent Magnet Synchronous Generator Using a Neuro-Fuzzy System. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-00350-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00349-4
Online ISBN: 978-3-030-00350-0
eBook Packages: Computer ScienceComputer Science (R0)