Nothing Special   »   [go: up one dir, main page]

Skip to main content

Control of a Permanent Magnet Synchronous Generator Using a Neuro-Fuzzy System

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 915))

Included in the following conference series:

Abstract

This document shows a neuro-fuzzy control system to regulate the velocity of a permanent magnet synchronous generator. This scheme comes up with two neuro-fuzzy systems where the first identifies the dynamics of the plant; the second is employed for control purposes. Subsequently, the performed training is examined to different reference values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dugan, R., McDermott, T., Ball, G.: Planning for distributed generation. IEEE Ind. Appl. Mag. 7, 80–88 (2001)

    Article  Google Scholar 

  2. Piagi, P., Lasseter, R.: Microgrid: a conceptual solution. In: Proceedings of the Power Electronics Specialists Conference, vol. 6, pp. 4285–4290 (2004)

    Google Scholar 

  3. Chen, J., Wu, H., Sun, M., Jiang, W., Cai, L., Guo, C.: Modeling and simulation of directly driven wind turbine with permanent magnet synchronous generator. In: IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia) (2012)

    Google Scholar 

  4. Patil, k., Mehta, B.: Modeling and simulation of variable speed wind turbine with direct drive permanent magnet synchronous generator. In: International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE) (2014)

    Google Scholar 

  5. Nguyen, H., Prasad, N., Walker, C., Walker, E.: A First Course in Fuzzy and Neural Control. Chapman & Hall/CRC, London (2003)

    MATH  Google Scholar 

  6. Espitia, H., González, G.: Identification of a permanent magnet synchronous generator using neuronal networks. In: IEEE Workshop on Engineering Applications (WEA), pp. 1–5 (2015)

    Google Scholar 

  7. Patil, K., Mehta, B.: Modeling and control of variable speed wind turbine with permanent magnet synchronous generator. In: International Conference on Advances in Green Energy (ICAGE), 17–18 December 2014 (2014)

    Google Scholar 

  8. Yin, M., Li, G., Zhou, M., Zhao, C.: Modeling of the wind turbine with a permanent magnet synchronous generator for integration. In: IEEE Power Engineering Society General Meeting, pp. 1–6 (2007)

    Google Scholar 

  9. Li, Y., Zhao, X., Jiao, L.: A nonlinear system identification approach based on neuro-fuzzy Networks. In: Proceedings of ICSP (2000)

    Google Scholar 

  10. Morales, L.: Estudio y evaluación del método de defuzificación basado en relaciones booleanas (DBR) aplicado a las redes neuro-difusas, para la identificación de sistemas no lineales. Proyecto de grado en Ingeniería Electrónica, Universidad Distrital Francisco José de Caldas (2009)

    Google Scholar 

  11. Wang, L.: A Course in Fuzzy Systems and Control. Prentice Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helbert Espitia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Espitia, H., Díaz, G., Díaz, S. (2018). Control of a Permanent Magnet Synchronous Generator Using a Neuro-Fuzzy System. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics