Nothing Special   »   [go: up one dir, main page]

Skip to main content

Application of the AdaBoost.RT Algorithm for the Prediction of the COLCAP Stock Index

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 915))

Included in the following conference series:

  • 1097 Accesses

Abstract

AdaBoost is an Artificial Intelligence algorithm widely used in classification problems with outstanding results in low complexity models. In this article, the prediction of the COLCAP series is carried out through the AdaBoost.RT algorithm with self-adaptive \(\varphi \). Firstly, the COLCAP index time series is analyzed in order to verify its stationarity by the unit root test. Exogenous information is used based on five time series of financial character, which were selected after performing a grey relational analysis and principal component analysis. To find optimal values of the algorithm, the variation of each value was executed. The results show that it is possible to predict the COLCAP index through AdaBoost using 48 weak classifiers resulting in MAPE = 1.247% and RMSE = 17.87. With a less complex model that uses two weak apprentices the results were MAPE = 1.403% and RMSE = 22.56.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Susruth, M.: Financial forecasting: an empirical study on box - Jenkins methodology with reference to the Indian stock market. 10(2), 115–123 (2017)

    Google Scholar 

  2. Huck, N., Guegan, D.: On the use of nearest neighbors in finance. Finance 26, 67–86 (2007)

    Google Scholar 

  3. Meade, N.: A comparison of the accuracy of short term foreign exchange forecasting methods. Int. J. Forecast. 18(1), 67–83 (2002)

    Article  MathSciNet  Google Scholar 

  4. Mahfoud, S., Mani, G., Reigel, S.: Nonlinear versus linear techniques for selecting individual stocks. In: Decision Technologies for Financial Engineering, pp. 65–75 (1997)

    Google Scholar 

  5. Chen, A.S., Leung, M.T., Daouk, H.: Application of neural networks to an emerging financial market: forecasting and trading the Taiwan stock index. Comput. Oper. Res. 30(6), 901–923 (2003)

    Article  Google Scholar 

  6. Kodogiannis, V., Lolis, A.: Forecasting financial time series using neural network and fuzzy system-based techniques. Neural Comput. Appl. 11, 90–102 (2002)

    Article  Google Scholar 

  7. Liu, S., Jingwen, X., Zhao, J., Xie, X., Zhang, W.: Efficiency enhancement of a process-based rainfall-runoff model using a new modified AdaBoost.RT technique. Appl. Soft Comput. J. 23, 521–529 (2014)

    Article  Google Scholar 

  8. Alfaro, E., García, N., Gámez, M., Elizondo, D.: Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks. Decis. Support. Syst. 45(1), 110–122 (2008)

    Article  Google Scholar 

  9. Wen, J., Zhang, X., Xu, Y., Li, Z., Liu, L.: Comparison of AdaBoost and logistic regression for detecting colorectal cancer patients with synchronous liver metastasis. In: 2nd International Conference on Biomedical and Pharmaceutical Engineering, ICBPE 2009 - Conference Proceedings (2009)

    Google Scholar 

  10. Liu, H., Tian, H., Li, Y., Zhang, L.: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions. Energy Convers. Manag. 92, 67–81 (2015)

    Article  Google Scholar 

  11. Hu, G.-S., Zhu, F.-F., Zhang, Y.-C., Yu, J.-L.: Study of integrating AdaBoost and weight support vector regression model. In: 2009 International Conference on Artificial Intelligence and Computational Intelligence, pp. 258–262 (2009)

    Google Scholar 

  12. de Colombia, B.V.: Metodología para el cálculo del íncide COLCAP. Technical report, Bolsa de Valores de Colombia, Bogotá (2016)

    Google Scholar 

  13. Perdomo, G.A.V., Sepúlveda, J.M.: Diseño y Evaluación de un Modelo de Pronóstico para el Índice COLCAP mediante Filtros de señal y Redes Neuronales Artificiales. In: Encuentro Internacional de Investigadores en Administración, number c, pp. 625–643 (2011)

    Google Scholar 

  14. Espinosa Acuña, O.A., Vaca González, P.A.: Fitting the classical and Bayesian GARCH models with student-t innovations to COLCAP index. In: Simposio Internacional de Estadística 2015, (c) (2015)

    Google Scholar 

  15. Freund, Y., Schapire, R.E.: A decision theoretic generalization of on-line learning and an application to boosting. Comput. Syst. Sci. 57, 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  16. Schapire, R.E.: Explaining AdaBoost. In: Schölkopf, B., Luo, Z., Vovk, V. (eds.) Empirical Inference, pp. 37–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41136-6_5

    Chapter  Google Scholar 

  17. Wang, Y., Han, P., Xiaoguang, L., Renbiao, W., Huang, J.: The performance comparison of Adaboost and SVM applied to SAR ATR. CIE Int. Conf. Radar Proc. 00, 1–4 (2007)

    Google Scholar 

  18. Solomatine, D.P., Shrestha, D.L.: AdaBoost.RT: a boosting algorithm for regression problems. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), vol. 2, pp. 1163–1168 (2004)

    Google Scholar 

  19. Autorregulador del Mercado de Valores de Colombia: Todo lo que un Inversionista debe saber sobre los nuevos Índices de la Bolsa de Valores de Colombia

    Google Scholar 

  20. de Colombia, B.V.: Índices bursátiles en línea

    Google Scholar 

  21. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd Edn (2002)

    Google Scholar 

  22. Sallehuddin, R., Shamsuddin, S.M.H., Hashim, S.Z.M.: Application of grey relational analysis for multivariate time series. In: 2008 Eighth International Conference on Intelligent Systems Design and Applications, pp. 432–437 (2008)

    Google Scholar 

  23. Rencher, A.C.: Methods of Multivariate Analysis, 2nd edn (2002)

    Google Scholar 

  24. Tian, H.X., Mao, Z.Z.: An ensemble ELM based on modified AdaBoost. RT algorithm for predicting the temperature of molten steel in ladle furnace. IEEE Trans. Autom. Sci. Eng. 7(1), 73–80 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Reyes Fajardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reyes Fajardo, L., Gaona Barrera, A. (2018). Application of the AdaBoost.RT Algorithm for the Prediction of the COLCAP Stock Index. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics