Abstract
In recent years, the popularity of natural computing has been on the increase. Recently, it has inspired a novel biological computational model, called virus machine, which incorporates concepts from virology and theoretical computer science. The virus machine computational paradigm is based on the manner in which viruses replicate and transmit from one host cell to another. It is represented as a heterogeneous network consisting of three subnetworks: a virus transmission network, an instruction transfer network, and an instruction-channel control network. In this paper, elementary arithmetic operation systems are built based on virus machine. Specifically, adder, subtractor, multiplier, and divider are constructed using virus machines. This work can be viewed as a first step towards a “CPU” in wet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)
Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414(6862), 430–434 (2001)
Bhatia, S., Laboda, C., Yanez, V.F., Haddock, T.L., Densmore, D.: Permutation machines. ACS Synth. Biol. 5(8), 827–834 (2016)
Bonchis, C., Ciobanu, G., Izbasa, C.: Encodings and arithmetic operations in membrane computing. Theory Appl. Models Comput. 3959, 621–630 (2006)
Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of DNA. Discret. Appl. Math. 71(1–3), 79–94 (1996)
Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W., Adleman, L.: Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296(5567), 499–502 (2002)
Cavaliere, M., Egecioglu, O., Ibarra, O.H., Ionescu, M., Păun, G., Woodworth, S.: Asynchronous spiking neural P systems: decidability and undecidability. Theor. Comput. Sci. 219(24), 197–207 (2013)
Chang, W.L.: Fast parallel DNA-based algorithms for molecular computation: quadratic congruence and factoring integers. IEEE Trans. Nanobiosci. 11(1), 62–69 (2012)
Chang, W.L., Vasilakos, A.: Molecular algorithms of implementing bio-molecular databases on a biological computer. IEEE Trans. Nanobiosci. 14(1), 104–111 (2014)
Chang, W.L., Vasilakos, A.V., Ho, M.: The DNA-based algorithms of implementing arithmetical operations of complex vectors on a biological computer. IEEE Trans. Nanobiosci. 14(8), 907–914 (2015)
Chen, X., Pérez-Jiménez, M.J., Valencia-Cabrera, L., Wang, B., Zeng, X.: Computing with viruses. Theor. Comput. Sci. 623, 146–159 (2016)
Diaz, C., Frias, T., Sanchez, G., Perez, H., Toscano, K., Duchen, G.: A novel parallel multiplier using spiking neural P systems with dendritic delays. Neurocomputing 239, 113–121 (2017)
Diaz, C., Sanchez, G., Duchen, G., Nakano, M., Perez, H.: An efficient hardware implementation of a novel unary spiking neural network multiplier with variable dendritic delays. Neurocomputing 189, 130–134 (2016)
Gupta, V., Irimia, J., Pau, I., Rodriguez-Paton, A.: Bioblocks: programming protocols in biology made easier. ACS Synth. Biol. 6(7), 1230–1232 (2017)
Gutiérrez, M.E., Gregorio Godoy, P., Pérez, D.P.G., Muñoz, L.E., Sáez, S., Rodriguez Paton, A.: A new improved and extended version of the multicell bacterial simulator gro. ACS Synth. Biol. 6(8), 1496–1508 (2017)
Kari, L., Gloor, G., Yu, S.: Using DNA to solve the bounded post correspondence problem. Theor. Comput. Sci. 231(2), 193–203 (2000)
Liu, X., Li, Z., Liu, J., Liu, L., Zeng, X.: Implementation of arithmetic operations with time-free spiking neural P systems. IEEE Trans. Nanobiosci. 14(6), 617–624 (2015)
Liu, X., Suo, J., Leung, S.C.H., Liu, J., Zeng, X.: The power of time-free tissue P systems: Attacking NP-complete problems. Neurocomputing 159(1), 151–156 (2015)
Ouyang, Q., Kaplan, P.D., Liu, S., Libchaber, A.: DNA solution of the maximal clique problem. Science 278(5337), 446–449 (1997)
Pan, L., Zeng, X., Zhang, X.: Time-free spiking neural P systems. Neural Comput. 23(5), 1320–1342 (2011)
Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
Song, T., Pan, L., Wang, J., Venkat, I., Subramanian, K.G., Abdullah, R.: Normal forms of spiking neural P systems with anti-spikes. IEEE Trans. Nanobiosci. 11(4), 352–359 (2012)
Xu, J., et al.: An unenumerative DNA computing model for vertex coloring problem. IEEE Trans. Nanobiosci. 10(2), 94–98 (2011)
Yang, J., Jiang, S., Liu, X., Pan, L., Zhang, C.: Aptamer-binding directed DNA origami pattern for logic gates. ACS Appl. Mater. Interfaces 8(49), 34054–34060 (2016)
Zeng, X., Song, T., Zhang, X., Pan, L.: Performing four basic arithmetic operations with spiking neural P systems. IEEE Trans. Nanobiosci. 11(4), 366–374 (2012)
Acknowledgements
The work was supported by the National Natural Science Foundation of China (Grant Nos. 61472333, 61772441, 61472335), Project of marine economic innovation and development in Xiamen (No. 16PFW034SF02), Natural Science Foundation of the Higher Education Institutions of Fujian Province (No. JZ160400), Natural Science Foundation of Fujian Province (No. 2017J01099), President Fund of Xiamen University (No. 20720170054), Project TIN2016-81079-R, (MINECO AEI/FEDER, Spain-EU) and InGEMICS-CM project (B2017/BMD-3691, FSE/FEDER, Comunidad de Madrid-EU). X. Zeng is supported by Juan de la Cierva position (code: IJCI-2015-26991).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Yan, X., Liu, X., Zeng, X., Rodríguez-Patón, A. (2018). An Implementation of Elementary Arithmetic with Virus Machine. In: Graciani, C., Riscos-Núñez, A., Păun, G., Rozenberg, G., Salomaa, A. (eds) Enjoying Natural Computing. Lecture Notes in Computer Science(), vol 11270. Springer, Cham. https://doi.org/10.1007/978-3-030-00265-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-00265-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00264-0
Online ISBN: 978-3-030-00265-7
eBook Packages: Computer ScienceComputer Science (R0)