Nothing Special   »   [go: up one dir, main page]

Skip to main content

Coherent Risk Measures Derived from Utility Functions

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11144))

Abstract

Coherent risk measures in financial management are discussed from the view point of average value-at-risks with risk spectra. A minimization problem of the distance between risk estimations through decision maker’s utility and coherent risk measures with risk spectra is introduced. The risk spectrum of the optimal coherent risk measures in this problem is obtained and it inherits the risk averse property of utility functions. Various properties of coherent risk measures and risk spectrum are demonstrated. Several numerical examples are given to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acerbi, C.: Spectral measures of risk: a coherent representation of subjective risk aversion. J. Bank. Financ. 26, 1505–1518 (2002)

    Article  Google Scholar 

  2. Adam, A., Houkari, M., Laurent, J.-P.: Spectral risk measures and portfolio selection. J. Bank. Financ. 32, 1870–1882 (2008)

    Article  Google Scholar 

  3. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Financ. 9, 203–228 (1999)

    Article  MathSciNet  Google Scholar 

  4. Cotter, J., Dowd, K.: Extreme spectral risk measures: an application to futures clearinghouse margin requirements. J. Bank. Financ. 30, 3469–3485 (2006)

    Article  Google Scholar 

  5. Emmer, S., Kratz, M., Tasche, D.: What is the best risk measure in practice? A comparison of standard measures. J. Risk 18, 31–60 (2015)

    Article  Google Scholar 

  6. Javidi, A.A.: Entropic value-at-risk: a new coherent risk measure. J. Optim. Theory Appl. 155, 1105–1123 (2012)

    Article  MathSciNet  Google Scholar 

  7. Jorion, P.: Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-Hill, New York (2006)

    Google Scholar 

  8. Kusuoka, S.: On law-invariant coherent risk measures. Adv. Math. Econ. 3, 83–95 (2001)

    Article  MathSciNet  Google Scholar 

  9. Markowitz, H.: Mean-Variance Analysis in Portfolio Choice and Capital Markets. Blackwell, Oxford (1990)

    MATH  Google Scholar 

  10. Pratt, J.W.: Risk aversion in the small and the large. Econometrica 32, 122–136 (1964)

    Article  Google Scholar 

  11. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)

    Article  Google Scholar 

  12. Tasche, D.: Expected shortfall and beyond. J. Bank. Financ. 26, 1519–1533 (2002)

    Article  Google Scholar 

  13. Yaari, M.E.: The dual theory of choice under risk. Econometrica 55, 95–115 (1987)

    Article  MathSciNet  Google Scholar 

  14. Yoshida, Y.: A dynamic value-at-risk portfolio model. In: Torra, V., Narakawa, Y., Yin, J., Long, J. (eds.) MDAI 2011. LNCS (LNAI), vol. 6820, pp. 43–54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22589-5_6

    Chapter  Google Scholar 

  15. Yoshida, Y.: An Ordered Weighted Average with a Truncation Weight on Intervals. In: Torra, V., Narukawa, Y., López, B., Villaret, M. (eds.) MDAI 2012. LNCS (LNAI), vol. 7647, pp. 45–55. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34620-0_6

    Chapter  Google Scholar 

Download references

Acknowledgments

This research is supported from JSPS KAKENHI Grant Number JP 16K05282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoshida, Y. (2018). Coherent Risk Measures Derived from Utility Functions. In: Torra, V., Narukawa, Y., Aguiló, I., González-Hidalgo, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2018. Lecture Notes in Computer Science(), vol 11144. Springer, Cham. https://doi.org/10.1007/978-3-030-00202-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00202-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00201-5

  • Online ISBN: 978-3-030-00202-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics