Abstract
We study timed systems in which some timing features are unknown parameters. First we consider Upper-bound Parametric Timed Automata (U-PTAs), one of the simplest extensions of timed automata with parameters, in which parameters are only used as clock upper bounds. Up to now, there have been several decidability results for the existence of parameter values in U-PTAs such that flat TCTL formulas are satisfied. We prove here that this does not extend to the full logic and that only one level of nesting leads to undecidability. This provides, to the best of our knowledge, the first problem decidable for Timed Automata with an undecidable parametric emptiness version for U-PTAs. Second we study Lower/Upper-bound Parametric Timed Automata (L/U-PTAs) in which parameters are used either as clock lower bound, or as clock upper bound, but not both. We prove that without invariants, flat TCTL is decidable for L/U-PTAs by resolving the last non investigated liveness properties.
This work is partially supported by the ANR national research program PACS (ANR-14-CE28-0002).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Throughout this section, we do not use the labeling function \(\mathbf {L}\).
- 2.
Observe that this definition also includes the locations with no outgoing edge at all.
References
Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Comput. 104(1), 2–34 (1993)
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC, pp. 592–601. ACM, New York (1993)
André, É., Lime, D.: Liveness in L/U-parametric timed automata. In: ACSD, pp. 9–18. IEEE (2017)
André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed automata. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 400–416. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47846-3_25
André, É., Lime, D., Roux, O.H.: On the expressiveness of parametric timed automata. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7_2
André, É.: What’s decidable about parametric timed automata? Int. J. Softw. Tools Technol. Transf. (2017, to appear)
Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_6
Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric timed automata. Formal Methods Syst. Des. 35(2), 121–151 (2009)
Bundala, D., Ouaknine, J.: Advances in parametric real-time reasoning. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 123–134. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44522-8_11
Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett. 102(5), 208–213 (2007)
Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. J. Logic Algebraic Program. 52–53, 183–220 (2002)
Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)
Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–310. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46430-1_26
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
André, É., Lime, D., Ramparison, M. (2018). TCTL Model Checking Lower/Upper-Bound Parametric Timed Automata Without Invariants. In: Jansen, D., Prabhakar, P. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2018. Lecture Notes in Computer Science(), vol 11022. Springer, Cham. https://doi.org/10.1007/978-3-030-00151-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-00151-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00150-6
Online ISBN: 978-3-030-00151-3
eBook Packages: Computer ScienceComputer Science (R0)