Nothing Special   »   [go: up one dir, main page]

Skip to main content

Online Timed Pattern Matching Using Automata

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11022))

Abstract

We provide a procedure for detecting the sub-segments of an incrementally observed Boolean signal w that match a given temporal pattern \(\varphi \). As a pattern specification language, we use timed regular expressions, a formalism well-suited for expressing properties of concurrent asynchronous behaviors embedded in metric time. We construct a timed automaton accepting the timed language denoted by \(\varphi \) and modify it slightly for the purpose of matching. We then apply zone-based reachability computation to this automaton while it reads w, and retrieve all the matching segments from the results. Since the procedure is automaton based, it can be applied to patterns specified by other formalisms such as timed temporal logics reducible to timed automata or directly encoded as timed automata. The procedure has been implemented and its performance on synthetic examples is demonstrated.

This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award), and by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement nr. 306595 “STATOR”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms. Pearson Education India, Noida (1974)

    MATH  Google Scholar 

  2. Aho, A.V., Kernighan, B.W., Weinberger, P.J.: The AWK Programming Language. Addison-Wesley Longman Publishing Co., Inc., Boston (1987)

    MATH  Google Scholar 

  3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  4. Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: Logic in Computer Science, pp. 160–171. IEEE (1997)

    Google Scholar 

  5. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)

    Article  MathSciNet  Google Scholar 

  6. Behrmann, G., et al.: Uppaal 4.0. In: Third International Conference on Quantitative Evaluation of Systems, QEST 2006, pp. 125–126. IEEE (2006)

    Google Scholar 

  7. Bozga, M., Fernandez, J.-C., Ghirvu, L., Graf, S., Krimm, J.-P., Mounier, L.: If: an intermediate representation and validation environment for timed asynchronous systems. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 307–327. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2_19

    Chapter  Google Scholar 

  8. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM (JACM) 11(4), 481–494 (1964)

    Article  MathSciNet  Google Scholar 

  9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking (1999)

    Google Scholar 

  10. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool Kronos. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020947

    Chapter  Google Scholar 

  11. Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg (2006). https://doi.org/10.1007/11867340_14

    Chapter  MATH  Google Scholar 

  12. Gelade, W.: Succinctness of regular expressions with interleaving, intersection and counting. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 363–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4_29

    Chapter  MATH  Google Scholar 

  13. Havlicek, J., Little, S.: Realtime regular expressions for analog and mixed-signal assertions. In: Proceedings of the International Conference on Formal Methods in Computer-Aided Design, pp. 155–162. FMCAD Inc. (2011)

    Google Scholar 

  14. Herrmann, P.: Renaming is necessary in timed regular expressions. In: Rangan, C.P., Raman, V., Ramanujam, R. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 47–59. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46691-6_4

    Chapter  Google Scholar 

  15. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation. SAE Int. J. Transp. Saf. 4(1), 15–24 (2016)

    Article  Google Scholar 

  16. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form. Method. Syst. Des. 34(3), 238–304 (2009)

    Article  Google Scholar 

  17. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transf. (STTT) 1(1), 134–152 (1997)

    Article  Google Scholar 

  18. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 79–94. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-4_6

    Chapter  MATH  Google Scholar 

  19. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata. IRE Trans. Electron. Comput. 1, 39–47 (1960)

    Article  Google Scholar 

  20. Pike, R.: The text editor Sam. Softw.: Pract. Exp. 17(11), 813–845 (1987)

    Google Scholar 

  21. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  22. Ben Salah, R., Bozga, M., Maler, O.: On interleaving in timed automata. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 465–476. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949_31

    Chapter  Google Scholar 

  23. Thompson, K.: Programming techniques: regular expression search algorithm. Commun. ACM 11(6), 419–422 (1968)

    Article  Google Scholar 

  24. Tripakis, S.: Fault diagnosis for timed automata. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 205–221. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45739-9_14

    Chapter  MATH  Google Scholar 

  25. Ulus, D.: Montre: a tool for monitoring timed regular expressions. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 329–335. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_16

    Chapter  Google Scholar 

  26. Ulus, D.: Pattern Matching with Time: Theory and Applications. Ph.D. thesis, University of Grenobles-Alpes (UGA) (2018)

    Google Scholar 

  27. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_16

    Chapter  MATH  Google Scholar 

  28. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 736–751. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_47

    Chapter  Google Scholar 

  29. Waga, M., Akazaki, T., Hasuo, I.: A Boyer-Moore type algorithm for timed pattern matching. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 121–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7_8

    Chapter  MATH  Google Scholar 

  30. Waga, M., Hasuo, I., Suenaga, K.: Efficient online timed pattern matching by automata-based skipping. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp. 224–243. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65765-3_13

    Chapter  MATH  Google Scholar 

  31. Yovine, S.: Model checking timed automata. In: Rozenberg, G., Vaandrager, F.W. (eds.) EEF School 1996. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65193-4_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Bakhirkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakhirkin, A., Ferrère, T., Nickovic, D., Maler, O., Asarin, E. (2018). Online Timed Pattern Matching Using Automata. In: Jansen, D., Prabhakar, P. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2018. Lecture Notes in Computer Science(), vol 11022. Springer, Cham. https://doi.org/10.1007/978-3-030-00151-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00151-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00150-6

  • Online ISBN: 978-3-030-00151-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics