Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approximate Probabilistic Parallel Multiset Rewriting Using MCMC

  • Conference paper
  • First Online:
KI 2018: Advances in Artificial Intelligence (KI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11117))

Abstract

Probabilistic parallel multiset rewriting systems (PPMRS) model probabilistic, dynamic systems consisting of multiple, (inter-) acting agents and objects (entities), where multiple individual actions can be performed in parallel. The main computational challenge in these approaches is computing the distribution of parallel actions (compound actions), that can be formulated as a constraint satisfaction problem (CSP). Unfortunately, computing the partition function for this distribution exactly is infeasible, as it requires to enumerate all solutions of the CSP, which are subject to a combinatorial explosion.

The central technical contribution of this paper is an efficient Markov Chain Monte Carlo (MCMC)-based algorithm to approximate the partition function, and thus the compound action distribution. The proposal function works by performing backtracking in the CSP search tree, and then sampling a solution of the remaining, partially solved CSP.

We demonstrate our approach on a Lotka-Volterra system with PPMRS semantics, where exact compound action computation is infeasible. Our approach allows to perform simulation studies and Bayesian filtering with PPMRS semantics in scenarios where this was previously infeasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use \( \langle \cdot \rangle \) to denote partial functions.

  2. 2.

    Due to the sequential sampling process, the probability of a compound action is higher when there are more possible permutations of the individual actions, which is explicitly avoided by our approach.

  3. 3.

    This is sufficient, as the problem here is not that finding each solution is difficult, but that there are factorially many solutions.

References

  1. Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Maximally parallel probabilistic semantics for multiset rewriting. Fundam. Inform. 112(1), 1–17 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96(1), 217–248 (1992). http://portal.acm.org/citation.cfm?doid=96709.96717

  3. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-aware sampling and weighted model counting for sat. In: AAAI, vol. 14, pp. 1722–1730 (2014)

    Google Scholar 

  4. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting. Artif. Intell. 172(6–7), 772–799 (2008)

    Article  MathSciNet  Google Scholar 

  5. Ciobanu, G., Cornacel, L.: Probabilistic transitions for P systems. Prog. Nat. Sci. 17(4), 432–441 (2007)

    Article  MathSciNet  Google Scholar 

  6. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft arc consistency revisited. Artif. Intell. 174, 449–478 (2010). http://linkinghub.elsevier.com/retrieve/pii/S0004370210000147

  7. Ermon, S., Gomes, C., Sabharwal, A., Selman, B.: Taming the curse of dimensionality: discrete integration by hashing and optimization. In: International Conference on Machine Learning, pp. 334–342 (2013)

    Google Scholar 

  8. Giavitto, J.L., Michel, O.: MGS: a rule-based programming language for complex objects and collections. Electron. Notes Theor. Comput. Sci. 59(4), 286–304 (2001)

    Article  Google Scholar 

  9. Gogate, V., Dechter, R.: Samplesearch: importance sampling in presence of determinism. Artif. Intell. 175(2), 694–729 (2011)

    Article  MathSciNet  Google Scholar 

  10. Häggström, O.: Finite Markov Chains and Algorithmic Applications, vol. 52. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  11. Lotka, A.J.: Analytical Theory of Biological Populations. Springer, New York (1998). https://doi.org/10.1007/978-1-4757-9176-1

    Book  MATH  Google Scholar 

  12. Lüdtke, S., Schröder, M., Bader, S., Kersting, K., Kirste, T.: Lifted Filtering via Exchangeable Decomposition. arXiv e-prints (2018). https://arxiv.org/abs/1801.10495

  13. Oury, N., Plotkin, G.: Multi-level modelling via stochastic multi-level multiset rewriting. Math. Struct. Comput. Sci. 23, 471–503 (2013)

    Article  MathSciNet  Google Scholar 

  14. Parker, M., Kamenev, A.: Extinction in the Lotka-Volterra model. Phys. Rev. E 80(2) (2009). https://link.aps.org/doi/10.1103/PhysRevE.80.021129

  15. Paun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-56196-2

    Book  MATH  Google Scholar 

  16. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P systems. Int. J. Found. Comput. Sci. 17(01), 183–204 (2006)

    Article  MathSciNet  Google Scholar 

  17. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard and easy problems. In: Proceedings of the International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  18. Schröder, M., Lüdtke, S., Bader, S., Krüger, F., Kirste, T.: LiMa: sequential lifted marginal filtering on multiset state descriptions. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS (LNAI), vol. 10505, pp. 222–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67190-1_17

    Chapter  Google Scholar 

  19. Wei, W., Selman, B.: A new approach to model counting. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 324–339. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lüdtke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lüdtke, S., Schröder, M., Kirste, T. (2018). Approximate Probabilistic Parallel Multiset Rewriting Using MCMC. In: Trollmann, F., Turhan, AY. (eds) KI 2018: Advances in Artificial Intelligence. KI 2018. Lecture Notes in Computer Science(), vol 11117. Springer, Cham. https://doi.org/10.1007/978-3-030-00111-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00111-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00110-0

  • Online ISBN: 978-3-030-00111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics