Nothing Special   »   [go: up one dir, main page]

Skip to main content

Controlled Bidirectional Remote Preparation of Single- and Two-Qubit State

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11065))

Included in the following conference series:

Abstract

We propose two novel schemes for controlled bidirectional remote state preparation of single- and two-qubit state by using five- and nine-qubit entangled state as the quantum channel. First, our schemes are considered in two cases that the coefficients of prepared state are real and complex, respectively. Second, by virtue of appropriate measurement and the corresponding local unitary operations, we explicitly give how to accomplish these preparation tasks. Third, taking the first scheme as an example, we discuss our scheme in four kinds of noisy environments (bit-flip, phase-flip, amplitude-damping and depolarizing noisy environment). We calculate fidelity and find that it depends on the prepared state coefficients and decoherence rate. Eventually, some discussions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and EinsteinCPodolskyCRosen channels. Phys. Rev. Lett. 70(1985), 13–29 (1993)

    MATH  Google Scholar 

  2. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  Google Scholar 

  3. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  Google Scholar 

  5. Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Q. Inf. Process. 11(6), 1653–1667 (2012)

    Article  MathSciNet  Google Scholar 

  6. Dakic, B.: Quantum discord as resource for remote state preparation. Nat. Phys. 8(9), 666–670 (2012)

    Article  Google Scholar 

  7. Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Q. Inf. Process. 16(10), 244 (2017)

    Article  Google Scholar 

  8. Cao, T.B., Nguyen, B.A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(1), 015003 (2013)

    Article  Google Scholar 

  9. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Q. Inf. Process. 14(9), 3441–3464 (2015)

    Article  MathSciNet  Google Scholar 

  10. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Q. Inf. Process. 14(11), 4263–4278 (2015)

    Article  MathSciNet  Google Scholar 

  11. Zhang, D., Zha, X., Duan, Y., Wei, Z.H.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Int. J. Theor. Phys. 55(1), 440–446 (2016)

    Article  Google Scholar 

  12. Zhang, D., Zha, X., Duan, Y., Yang, Y.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Q. Inf. Process. 15(5), 2169–2179 (2016)

    Article  MathSciNet  Google Scholar 

  13. Li, Y., Jin, X.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Q. Inf. Process. 15(2), 929–945 (2016)

    Article  MathSciNet  Google Scholar 

  14. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)

    Article  Google Scholar 

  15. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and con Tos5. In: Proceedings of the International Conference on Computers, Systems and Signal Processing (1984)

    Google Scholar 

  16. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  Google Scholar 

  17. Liang, X.T.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39(5), 537–542 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work is supported by the NSFC (Grant Nos. 61671087, 61272514, 61170272, 61003287), the Major Science and Technology Support Program of Guizhou Province (Grant No. 20183001), the Fok Ying Tong Education Foundation (Grant No. 131067), and Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data (2017BDKFJJ007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Xu or Xiu-Bo Chen .

Editor information

Editors and Affiliations

Appendix

Appendix

When the prepared state coefficients are real. Alice’s and Bob’s unitary operations are executed, respectively, where IXiYZ are pauli operations.

Alice’s and Bob’s result

Charlie’s result

Unitary operation

\(|H_{1}\rangle _{79}|K_{1}\rangle _{24}\)

\(|0\rangle _{1}\)

\(I_{3}\otimes I_{5}\otimes I_{6}\otimes I_{8}\)

\(|H_{1}\rangle _{79}|K_{2}\rangle _{24}\)

\(|0\rangle _{1}\)

\(I_{3}\otimes I_{5}\otimes I_{6}\otimes -iY_{8}\)

\(|H_{1}\rangle _{79}|K_{3}\rangle _{24}\)

\(|0\rangle _{1}\)

\(I_{3}\otimes I_{5}\otimes iY_{6}\otimes -Z_{8}\)

\(|H_{1}\rangle _{79}|K_{4}\rangle _{24}\)

\(|0\rangle _{1}\)

\(I_{3}\otimes I_{5}\otimes iY_{6}\otimes -X_{8}\)

\(|H_{2}\rangle _{79}|K_{1}\rangle _{24}\)

\(|0\rangle _{1}\)

\(I_{3}\otimes -iY_{5}\otimes I_{6}\otimes I_{8}\)

\(|H_{2}\rangle _{79}|K_{2}\rangle _{24}\)

\(|0\rangle _{1}\)

\(I_{3}\otimes -iY_{5}\otimes I_{6}\otimes -iY_{8}\)

\(|H_{2}\rangle _{79}|K_{3}\rangle _{24}\)

\(|0\rangle _{1}\)

\(I_{3}\otimes -iY_{5}\otimes iY_{6}\otimes -Z_{8}\)

\(|H_{2}\rangle _{79}|K_{4}\rangle _{24}\)

\(|0\rangle _{1}\)

\(I_{3}\otimes -iY_{5}\otimes iY_{6}\otimes -X_{8}\)

\(|H_{3}\rangle _{79}|K_{1}\rangle _{24}\)

\(|0\rangle _{1}\)

\(iY_{3}\otimes -Z_{5}\otimes I_{6}\otimes I_{8}\)

\(|H_{3}\rangle _{79}|K_{2}\rangle _{24}\)

\(|0\rangle _{1}\)

\(iY_{3}\otimes -Z_{5}\otimes I_{6}\otimes -iY_{8}\)

\(|H_{3}\rangle _{79}|K_{3}\rangle _{24}\)

\(|0\rangle _{1}\)

\(iY_{3}\otimes -Z_{5}\otimes iY_{6}\otimes -Z_{8}\)

\(|H_{3}\rangle _{79}|K_{4}\rangle _{24}\)

\(|0\rangle _{1}\)

\(iY_{3}\otimes -Z_{5}\otimes iY_{6}\otimes -X_{8}\)

\(|H_{4}\rangle _{79}|K_{1}\rangle _{24}\)

\(|0\rangle _{1}\)

\(iY_{3}\otimes -X_{5}\otimes I_{6}\otimes I_{8}\)

\(|H_{4}\rangle _{79}|K_{2}\rangle _{24}\)

\(|0\rangle _{1}\)

\(iY_{3}\otimes -X_{5}\otimes I_{6}\otimes -iY_{8}\)

\(|H_{4}\rangle _{79}|K_{3}\rangle _{24}\)

\(|0\rangle _{1}\)

\(iY_{3}\otimes -X_{5}\otimes iY_{6}\otimes -Z_{8}\)

\(|H_{4}\rangle _{79}|K_{4}\rangle _{24}\)

\(|0\rangle _{1}\)

\(iY_{3}\otimes -X_{5}\otimes iY_{6}\otimes -X_{8}\)

\(|H_{1}\rangle _{79}|K_{1}\rangle _{24}\)

\(|1\rangle _{1}\)

\(iY_{3}\otimes iY_{5}\otimes iY_{6}\otimes iY_{8}\)

\(|H_{1}\rangle _{79}|K_{2}\rangle _{24}\)

\(|1\rangle _{1}\)

\(iY_{3}\otimes iY_{5}\otimes iY_{6}\otimes I_{8}\)

\(|H_{1}\rangle _{79}|K_{3}\rangle _{24}\)

\(|1\rangle _{1}\)

\(iY_{3}\otimes iY_{5}\otimes I_{6}\otimes X_{8}\)

\(|H_{1}\rangle _{79}|K_{4}\rangle _{24}\)

\(|1\rangle _{1}\)

\(iY_{3}\otimes iY_{5}\otimes I_{6}\otimes Z_{8}\)

\(|H_{2}\rangle _{79}|K_{1}\rangle _{24}\)

\(|1\rangle _{1}\)

\(iY_{3}\otimes I_{5}\otimes iY_{6}\otimes iY_{8}\)

\(|H_{2}\rangle _{79}|K_{2}\rangle _{24}\)

\(|1\rangle _{1}\)

\(iY_{3}\otimes I_{5}\otimes iY_{6}\otimes I_{8}\)

\(|H_{2}\rangle _{79}|K_{3}\rangle _{24}\)

\(|1\rangle _{1}\)

\(iY_{3}\otimes I_{5}\otimes I_{6}\otimes X_{8}\)

\(|H_{2}\rangle _{79}|K_{4}\rangle _{24}\)

\(|1\rangle _{1}\)

\(iY_{3}\otimes I_{5}\otimes I_{6}\otimes Z_{8}\)

\(|H_{3}\rangle _{79}|K_{1}\rangle _{24}\)

\(|1\rangle _{1}\)

\(I_{3}\otimes X_{5}\otimes iY_{6}\otimes iY_{8}\)

\(|H_{3}\rangle _{79}|K_{2}\rangle _{24}\)

\(|1\rangle _{1}\)

\(I_{3}\otimes X_{5}\otimes iY_{6}\otimes I_{8}\)

\(|H_{3}\rangle _{79}|K_{3}\rangle _{24}\)

\(|1\rangle _{1}\)

\(I_{3}\otimes X_{5}\otimes I_{6}\otimes X_{8}\)

\(|H_{3}\rangle _{79}|K_{4}\rangle _{24}\)

\(|1\rangle _{1}\)

\(I_{3}\otimes X_{5}\otimes I_{6}\otimes Z_{8}\)

\(|H_{4}\rangle _{79}|K_{1}\rangle _{24}\)

\(|1\rangle _{1}\)

\(I_{3}\otimes Z_{5}\otimes iY_{6}\otimes iY_{8}\)

\(|H_{4}\rangle _{79}|K_{3}\rangle _{24}\)

\(|1\rangle _{1}\)

\(I_{3}\otimes Z_{5}\otimes iY_{6}\otimes I_{8}\)

\(|H_{4}\rangle _{79}|K_{3}\rangle _{24}\)

\(|1\rangle _{1}\)

\(I_{3}\otimes Z_{5}\otimes I_{6}\otimes X_{8}\)

\(|H_{4}\rangle _{79}|K_{4}\rangle _{24}\)

\(|1\rangle _{1}\)

\(I_{3}\otimes Z_{5}\otimes I_{6}\otimes Z_{8}\)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, YR., Xu, G., Chen, XB., Yang, YX. (2018). Controlled Bidirectional Remote Preparation of Single- and Two-Qubit State. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11065. Springer, Cham. https://doi.org/10.1007/978-3-030-00012-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00012-7_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00011-0

  • Online ISBN: 978-3-030-00012-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics