Nothing Special   »   [go: up one dir, main page]

Skip to main content

Facebook5k: A Novel Evaluation Resource Dataset for Cross-Media Search

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11063))

Included in the following conference series:

Abstract

Semantic concepts selection for model construction and data collection is an open research question. It is highly demanding to choose good multimedia concepts with small semantic gaps to facilitate the work of cross-media system developers. Since, this work is very scarce therefore; this paper contributes a new real-world web image dataset created by NGN Tsinghua Laboratory students for cross media search. Unlike previous datasets, such as Flicker30k, Wikipedia and NUS have high semantic gap, results in leading to inconsistency with real time applications. To overcome these drawbacks, the proposed Facebook5k dataset includes: (1) 5130 images crawled from Facebook through users feelings; (2) Images are categorized according to users feelings; (3) Facebook5k is independent of tags and language, rather than uses feelings for search. Based on the proposed dataset, we point out key features of social website images and identify some research problems on image annotation and retrieval. The benchmark results show the effectiveness of the proposed dataset to simplify and improve general image retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    facebook.com.

  2. 2.

    instagram.com.

  3. 3.

    flickr.com.

  4. 4.

    http://ngn.ee.tsinghua.edu.cn/.

References

  1. Hwang, S.J., Grauman, K.: Reading between the lines: object localization using implicit cues from image tags. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1145–1158 (2012)

    Article  Google Scholar 

  2. Rasiwasia, N., Costa Pereira, J., Coviello, E., Doyle, G., Lanckriet, G.R., Levy, R., Vasconcelos, N.: A new approach to cross-modal multimedia retrieva. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 251–260 (2010)

    Google Scholar 

  3. Grubinger, M., Clough, P., Müller, H., Deselaers, T: The IAPR TC-12 benchmark: a new evaluation resource for visual information systems. In: International Workshop Ontoimage, vol. 5 (2006)

    Google Scholar 

  4. Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. IEEE Trans. Pattern Anal. Mach. Intell. 30, 985–1002 (2008)

    Article  Google Scholar 

  5. Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised learning of semantic classes for image annotation and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 29, 394–410 (2007)

    Article  Google Scholar 

  6. Von Ahn, L., Dabbish, L: Labeling images with a computer game. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 319–326. ACM (2004)

    Google Scholar 

  7. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77, 157–173 (2008)

    Article  Google Scholar 

  8. Wang, X.-J., Zhang, L., Jing, F., Ma, W.-Y.: Annosearch: image auto-annotation by search. In: IEEE computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1483–1490. IEEE Press, New York (2006)

    Google Scholar 

  9. Lu, Y., Zhang, L., Tian, Q., Ma, W.-Y.: What are the high-level concepts with small semantic gaps? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Press, New York (2008)

    Google Scholar 

  10. Peng, Y., Huang, X., Zhao, Y.: An overview of cross-media retrieval: Concepts, methodologies, benchmarks and challenges. IEEE Trans. Circuits Syst. Video Technol. 28(9), 2372–2385 (2018)

    Article  Google Scholar 

  11. Tang, J., Song, Y., Hua, X.-S., Mei, T., Wu, X.: To construct optimal training set for video annotation. In: Proceedings of the 14th ACM International Conference on Multimedia, pp. 89–92. ACM (2006)

    Google Scholar 

  12. Hu, Y., Zheng, L., Yang, Y., Huang, Y.: Twitter100k: a real-world dataset for weakly supervised cross-media retrieval. IEEE Trans. Multimed. 20, 927–938 (2017)

    Article  Google Scholar 

  13. Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D.M., Jordan, M.I.: Matching words and pictures. J. Mach. Learn. Res. 3, 1107–1135 (2003)

    MATH  Google Scholar 

  14. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106, 59–70 (2007)

    Article  Google Scholar 

  15. Naphade, M., et al.: Large-scale concept ontology for multimedia. IEEE Multimed. 13, 86–91 (2006)

    Article  Google Scholar 

  16. Snoek, C.G.M., Worring, M., Van Gemert, J.C., Geusebroek, J.-M., Smeulders, A.W.M.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proceedings of the 14th ACM International Conference on Multimedia, pp. 421–430. ACM Press (2006)

    Google Scholar 

  17. Lu, Y.-J., Nguyen, P.A., Zhang, H., Ngo, C.-W.: Concept-based interactive search system. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10133, pp. 463–468. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51814-5_42

    Chapter  Google Scholar 

  18. Kambau, R.A., Hasibuan, Z.A.: Concept-based multimedia information retrieval system using ontology search in cultural heritage. In: Second International Conference on Informatics and Computing (ICIC), pp. 1–6. IEEE Press, New York (2017)

    Google Scholar 

  19. Kambau, R.A., Hasibuan, Z.A.: Evolution of information retrieval system: critical review of multimedia information retrieval system based on content, context, and concept. In: 11th International Conference on Information & Communication Technology and System (ICTS), pp. 91–98. IEEE Press, New York (2017)

    Google Scholar 

  20. Li, X., Uricchio, T., Ballan, L., Bertini, M., Snoek, C.G.M., Bimbo, A.D.: Socializing the semantic gap: a comparative survey on image tag assignment, refinement, and retrieval. ACM Comput. Surv. (CSUR) 49 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (No. U1405254, U1536115, U1536207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Tu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

ur Rehman, S., Huang, Y., Tu, S., ur Rehman, O. (2018). Facebook5k: A Novel Evaluation Resource Dataset for Cross-Media Search. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11063. Springer, Cham. https://doi.org/10.1007/978-3-030-00006-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00006-6_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00005-9

  • Online ISBN: 978-3-030-00006-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics