Abstract
In 2011, Naehrig et al. proposed a RLWE-based Homomorphic Encryption scheme. In this paper, we designed a new scheme which combined with the batch technique. Concretely, the technique packed multiple “plaintext slots” into a ciphertext by using the Chinese Remainder Theorem, and then performed homomorphic operations on it. Considering the exponential growth of the noise in each multiplication operation, we used the key switching and modulus switching technique to reduce the noise size in ciphertext, ensuring the correct decryption and the next homomorphic computation. In particular, We can encrypt \( {\text{O}}\left( {n\lambda } \right) \) plaintexts in the encryption process, improving the efficiency of \( \lambda \) times compared to the original scheme. Finally, we analyzed the security and parameters of the scheme. It was proven that our scheme is CPA security.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Feng, D.G., Zhang, M., Zhang Y., et al.: Study on cloud computing security. J. Softw. 22(1), 71–83 (2011)
Rivest, R.L., Adlman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM Press, New York (2009)
Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_9
Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Crypt., 71(1), 57–81 (2014)
Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_28
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science, pp. 97–106. IEEE Computer Society, Washington DC (2011)
Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, pp. 113–124. ACM (2011)
Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press (1997)
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Micciancio, D.: The shortest vector in a lattice is hard to approximate to within some constant. SIAM J. Comput. 30(6), 2008–2035 (2001)
Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_3
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21
Gentry, C.: A fully homomorphic encryption scheme. Doctoral thesis. Stanford University (2009)
Acknowledgments
This work is supported by the National Nature Science Foundation of China under Grand No. 61601515, and Nature Science Foundation of Henan Province under Grand No. 162300410332.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, M., Hu, B. (2018). A New Fully Homomorphic Encryption Scheme on Batch Technique. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11063. Springer, Cham. https://doi.org/10.1007/978-3-030-00006-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-00006-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00005-9
Online ISBN: 978-3-030-00006-6
eBook Packages: Computer ScienceComputer Science (R0)