Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient MapReduce-Based Apriori-Like Algorithm for Mining Frequent Itemsets from Big Data

  • Conference paper
  • First Online:
Wireless Internet (WICON 2018)

Abstract

Data mining can discover valuable information from large amounts of data so as to utilize this information to enhance personal or organizational competitiveness. Apriori is a classic algorithm for mining frequent itemsets. Recently, with rapid growth of the Internet as well as fast development of information and communications technology, the amount of data is augmented in an explosive fashion at a speed of tens of petabytes per day. These rapidly expensive data are characterized by huge amount, high speed, continuous arrival, real-time, and unpredictability. Traditional data mining algorithms are not applicable. Therefore, big data mining has become an important research issue.

Clouding computing is a key technique for big data. In this paper, we study the issue of applying cloud computing to mining frequent itemsets from big data. We propose a MapReduce-based Apriori-like frequent itemset mining algorithm called Apriori-MapReduce (abbreviated as AMR). The salient feature of AMR is that it deletes the items of itemsets lower than the minimum support from the transaction database. In such a way, it can greatly reduce the generation of candidate itemsets to avoid a memory shortage and an overload to I/O and CPU, so that a better mining efficiency can be achieved. Empirical studies show that the processing efficiency of the AMR algorithm is superior to that of another efficient MapReduce-based Apriori algorithm under various minimum supports and numbers of transactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal R., Srikant, R.: Fast algorithms for mining association rules in large database. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499, Santiago de Chile (1994)

    Google Scholar 

  2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the 21st ACM SIGMOD-SIGACT-AIGART Symposium on Principles of Database Systems, pp. 1–16, Madison, WI, June 2002

    Google Scholar 

  3. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute, New York (2011)

    Google Scholar 

  4. Turner, V., Gantz, J.F., Reinsel, D., Minton, S.: The digital universe of opportunities: rich data and the increasing value of the internet of things. In: International Data Corporation, White Paper, IDC_1672, May 2014

    Google Scholar 

  5. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Towards an adaptive approach for mining data streams in resource constrained environments. In: Proceedings of the 2004 International Conference on Data Warehousing and Knowledge Discovery, pp. 189–198, Zaragoza, Spain, September 2004

    Google Scholar 

  6. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. ACM Sigmod Record 34(2), 18–26 (2005)

    Article  Google Scholar 

  7. Golab, L., Ozsu, T.M.: Issues in data stream management. ACM Sigmod Record 32(2), 5–14 (2003)

    Article  Google Scholar 

  8. Wang, F., Ercegovac, V., Syeda-Mahmood, T., et al.: Large-scale multimodal mining for healthcare with MapReduce. In: Proceedings of the 1st ACM International Health Informatics Symposium, pp. 479–483, New York, November 2010

    Google Scholar 

  9. Lin, R.C.H., Liao, H.J., Tung, K.Y., Lin, Y.C., Wu, S.L.: Network traffic analysis with cloud platform. J. Internet Technol. 13(6), 953–961 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Yang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chao, CM., Chen, PZ., Yang, SY., Yen, CH. (2019). An Efficient MapReduce-Based Apriori-Like Algorithm for Mining Frequent Itemsets from Big Data. In: Chen, JL., Pang, AC., Deng, DJ., Lin, CC. (eds) Wireless Internet. WICON 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-030-06158-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06158-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06157-9

  • Online ISBN: 978-3-030-06158-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics